|
|
|
#define OLC_PGE_APPLICATION
|
|
|
|
#include "pixelGameEngine.h"
|
|
|
|
#include <strstream>
|
|
|
|
#include <algorithm>
|
|
|
|
|
|
|
|
using namespace olc;
|
|
|
|
|
|
|
|
struct vec2d
|
|
|
|
{
|
|
|
|
float u=0;
|
|
|
|
float v=0;
|
|
|
|
float w=1;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
struct vec3d
|
|
|
|
{
|
|
|
|
float x=0;
|
|
|
|
float y=0;
|
|
|
|
float z=0;
|
|
|
|
float w=1;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct triangle
|
|
|
|
{
|
|
|
|
vec3d p[3];
|
|
|
|
vec2d uv[3];
|
|
|
|
Pixel col;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct mesh
|
|
|
|
{
|
|
|
|
std::vector<triangle> tris;
|
|
|
|
Decal*texture;
|
|
|
|
|
|
|
|
void Parse(std::string str,int&v,int&uv) {
|
|
|
|
std::cout<<str<<"\n";
|
|
|
|
std::stringstream s(str.substr(0,str.find("/")+1));
|
|
|
|
s>>v;
|
|
|
|
str.erase(0,str.find("/")+1);
|
|
|
|
std::stringstream s2(str.substr(0,str.find("/")+1));
|
|
|
|
s2>>uv;
|
|
|
|
//std::cout<<" "<<v<<"/"<<uv<<"\n";
|
|
|
|
}
|
|
|
|
|
|
|
|
bool LoadFromObjectFile(std::string sFilename)
|
|
|
|
{
|
|
|
|
std::ifstream f(sFilename);
|
|
|
|
if (!f.is_open())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Local cache of verts
|
|
|
|
std::vector<vec3d> verts;
|
|
|
|
std::vector<vec2d> uvs;
|
|
|
|
|
|
|
|
std::string data;
|
|
|
|
while (f.good()) {
|
|
|
|
f>>data;
|
|
|
|
if (data=="v") {
|
|
|
|
float x,y,z;
|
|
|
|
f>>x>>y>>z;
|
|
|
|
verts.push_back({x,y,z});
|
|
|
|
//std::cout<<x<<" "<<y<<" "<<z<<"\n";
|
|
|
|
} else
|
|
|
|
if (data=="vt") {
|
|
|
|
float u,v;
|
|
|
|
f>>u>>v;
|
|
|
|
uvs.push_back({u,v});
|
|
|
|
//std::cout<<u<<" "<<v<<"\n";
|
|
|
|
} else
|
|
|
|
if (data=="f") {
|
|
|
|
//std::cout<<"face\n";
|
|
|
|
std::string t1,t2,t3;
|
|
|
|
f>>t1>>t2>>t3;
|
|
|
|
int v1,v2,v3,uv1,uv2,uv3;
|
|
|
|
Parse(t1,v1,uv1);
|
|
|
|
Parse(t2,v2,uv2);
|
|
|
|
Parse(t3,v3,uv3);
|
|
|
|
tris.push_back({verts[v1-1],verts[v2-1],verts[v3-1],
|
|
|
|
uvs[uv1-1],uvs[uv2-1],uvs[uv3-1]});
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
struct mat4x4
|
|
|
|
{
|
|
|
|
float m[4][4] = { 0 };
|
|
|
|
};
|
|
|
|
|
|
|
|
class olcEngine3D : public PixelGameEngine
|
|
|
|
{
|
|
|
|
|
|
|
|
public:
|
|
|
|
|
|
|
|
Decal*texture;
|
|
|
|
olcEngine3D()
|
|
|
|
{
|
|
|
|
sAppName = "3D Demo";
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
mesh meshCube;
|
|
|
|
mat4x4 matProj;
|
|
|
|
|
|
|
|
vec3d vCamera={0,0,0};
|
|
|
|
vec3d vLookDir;
|
|
|
|
|
|
|
|
float zOffset=2;
|
|
|
|
|
|
|
|
float fTheta=0;
|
|
|
|
float fYaw=0;
|
|
|
|
float pitch=-M_PI/6;
|
|
|
|
|
|
|
|
vec3d
|
|
|
|
Matrix_MultiplyVector(mat4x4 &m, vec3d &i)
|
|
|
|
{
|
|
|
|
vec3d v;
|
|
|
|
v.x = i.x * m.m[0][0] + i.y * m.m[1][0] + i.z * m.m[2][0] + i.w * m.m[3][0];
|
|
|
|
v.y = i.x * m.m[0][1] + i.y * m.m[1][1] + i.z * m.m[2][1] + i.w * m.m[3][1];
|
|
|
|
v.z = i.x * m.m[0][2] + i.y * m.m[1][2] + i.z * m.m[2][2] + i.w * m.m[3][2];
|
|
|
|
v.w = i.x * m.m[0][3] + i.y * m.m[1][3] + i.z * m.m[2][3] + i.w * m.m[3][3];
|
|
|
|
return v;
|
|
|
|
}
|
|
|
|
|
|
|
|
mat4x4 Matrix_MakeIdentity()
|
|
|
|
{
|
|
|
|
mat4x4 matrix;
|
|
|
|
matrix.m[0][0] = 1.0f;
|
|
|
|
matrix.m[1][1] = 1.0f;
|
|
|
|
matrix.m[2][2] = 1.0f;
|
|
|
|
matrix.m[3][3] = 1.0f;
|
|
|
|
return matrix;
|
|
|
|
}
|
|
|
|
|
|
|
|
mat4x4 Matrix_MakeRotationX(float fAngleRad)
|
|
|
|
{
|
|
|
|
mat4x4 matrix;
|
|
|
|
matrix.m[0][0] = 1.0f;
|
|
|
|
matrix.m[1][1] = cosf(fAngleRad);
|
|
|
|
matrix.m[1][2] = sinf(fAngleRad);
|
|
|
|
matrix.m[2][1] = -sinf(fAngleRad);
|
|
|
|
matrix.m[2][2] = cosf(fAngleRad);
|
|
|
|
matrix.m[3][3] = 1.0f;
|
|
|
|
return matrix;
|
|
|
|
}
|
|
|
|
|
|
|
|
mat4x4 Matrix_MakeRotationY(float fAngleRad)
|
|
|
|
{
|
|
|
|
mat4x4 matrix;
|
|
|
|
matrix.m[0][0] = cosf(fAngleRad);
|
|
|
|
matrix.m[0][2] = sinf(fAngleRad);
|
|
|
|
matrix.m[2][0] = -sinf(fAngleRad);
|
|
|
|
matrix.m[1][1] = 1.0f;
|
|
|
|
matrix.m[2][2] = cosf(fAngleRad);
|
|
|
|
matrix.m[3][3] = 1.0f;
|
|
|
|
return matrix;
|
|
|
|
}
|
|
|
|
|
|
|
|
mat4x4 Matrix_MakeRotationZ(float fAngleRad)
|
|
|
|
{
|
|
|
|
mat4x4 matrix;
|
|
|
|
matrix.m[0][0] = cosf(fAngleRad);
|
|
|
|
matrix.m[0][1] = sinf(fAngleRad);
|
|
|
|
matrix.m[1][0] = -sinf(fAngleRad);
|
|
|
|
matrix.m[1][1] = cosf(fAngleRad);
|
|
|
|
matrix.m[2][2] = 1.0f;
|
|
|
|
matrix.m[3][3] = 1.0f;
|
|
|
|
return matrix;
|
|
|
|
}
|
|
|
|
|
|
|
|
mat4x4 Matrix_MakeTranslation(float x, float y, float z)
|
|
|
|
{
|
|
|
|
mat4x4 matrix;
|
|
|
|
matrix.m[0][0] = 1.0f;
|
|
|
|
matrix.m[1][1] = 1.0f;
|
|
|
|
matrix.m[2][2] = 1.0f;
|
|
|
|
matrix.m[3][3] = 1.0f;
|
|
|
|
matrix.m[3][0] = x;
|
|
|
|
matrix.m[3][1] = y;
|
|
|
|
matrix.m[3][2] = z;
|
|
|
|
return matrix;
|
|
|
|
}
|
|
|
|
|
|
|
|
mat4x4 Matrix_MakeProjection(float fFovDegrees, float fAspectRatio, float fNear, float fFar)
|
|
|
|
{
|
|
|
|
float fFovRad = 1.0f / tanf(fFovDegrees * 0.5f / 180.0f * 3.14159f);
|
|
|
|
mat4x4 matrix;
|
|
|
|
matrix.m[0][0] = fAspectRatio * fFovRad;
|
|
|
|
matrix.m[1][1] = fFovRad;
|
|
|
|
matrix.m[2][2] = fFar / (fFar - fNear);
|
|
|
|
matrix.m[3][2] = (-fFar * fNear) / (fFar - fNear);
|
|
|
|
matrix.m[2][3] = 1.0f;
|
|
|
|
matrix.m[3][3] = 0.0f;
|
|
|
|
return matrix;
|
|
|
|
}
|
|
|
|
|
|
|
|
mat4x4 Matrix_MultiplyMatrix(mat4x4 &m1, mat4x4 &m2)
|
|
|
|
{
|
|
|
|
mat4x4 matrix;
|
|
|
|
for (int c = 0; c < 4; c++)
|
|
|
|
for (int r = 0; r < 4; r++)
|
|
|
|
matrix.m[r][c] = m1.m[r][0] * m2.m[0][c] + m1.m[r][1] * m2.m[1][c] + m1.m[r][2] * m2.m[2][c] + m1.m[r][3] * m2.m[3][c];
|
|
|
|
return matrix;
|
|
|
|
}
|
|
|
|
|
|
|
|
mat4x4 Matrix_PointAt(vec3d &pos, vec3d &target, vec3d &up)
|
|
|
|
{
|
|
|
|
// Calculate new forward direction
|
|
|
|
vec3d newForward = Vector_Sub(target, pos);
|
|
|
|
newForward = Vector_Normalise(newForward);
|
|
|
|
|
|
|
|
// Calculate new Up direction
|
|
|
|
vec3d a = Vector_Mul(newForward, Vector_DotProduct(up, newForward));
|
|
|
|
vec3d newUp = Vector_Sub(up, a);
|
|
|
|
newUp = Vector_Normalise(newUp);
|
|
|
|
|
|
|
|
// New Right direction is easy, its just cross product
|
|
|
|
vec3d newRight = Vector_CrossProduct(newUp, newForward);
|
|
|
|
|
|
|
|
// Construct Dimensioning and Translation Matrix
|
|
|
|
mat4x4 matrix;
|
|
|
|
matrix.m[0][0] = newRight.x; matrix.m[0][1] = newRight.y; matrix.m[0][2] = newRight.z; matrix.m[0][3] = 0.0f;
|
|
|
|
matrix.m[1][0] = newUp.x; matrix.m[1][1] = newUp.y; matrix.m[1][2] = newUp.z; matrix.m[1][3] = 0.0f;
|
|
|
|
matrix.m[2][0] = newForward.x; matrix.m[2][1] = newForward.y; matrix.m[2][2] = newForward.z; matrix.m[2][3] = 0.0f;
|
|
|
|
matrix.m[3][0] = pos.x; matrix.m[3][1] = pos.y; matrix.m[3][2] = pos.z; matrix.m[3][3] = 1.0f;
|
|
|
|
return matrix;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
mat4x4 Matrix_QuickInverse(mat4x4 &m) // Only for Rotation/Translation Matrices
|
|
|
|
{
|
|
|
|
mat4x4 matrix;
|
|
|
|
matrix.m[0][0] = m.m[0][0]; matrix.m[0][1] = m.m[1][0]; matrix.m[0][2] = m.m[2][0]; matrix.m[0][3] = 0.0f;
|
|
|
|
matrix.m[1][0] = m.m[0][1]; matrix.m[1][1] = m.m[1][1]; matrix.m[1][2] = m.m[2][1]; matrix.m[1][3] = 0.0f;
|
|
|
|
matrix.m[2][0] = m.m[0][2]; matrix.m[2][1] = m.m[1][2]; matrix.m[2][2] = m.m[2][2]; matrix.m[2][3] = 0.0f;
|
|
|
|
matrix.m[3][0] = -(m.m[3][0] * matrix.m[0][0] + m.m[3][1] * matrix.m[1][0] + m.m[3][2] * matrix.m[2][0]);
|
|
|
|
matrix.m[3][1] = -(m.m[3][0] * matrix.m[0][1] + m.m[3][1] * matrix.m[1][1] + m.m[3][2] * matrix.m[2][1]);
|
|
|
|
matrix.m[3][2] = -(m.m[3][0] * matrix.m[0][2] + m.m[3][1] * matrix.m[1][2] + m.m[3][2] * matrix.m[2][2]);
|
|
|
|
matrix.m[3][3] = 1.0f;
|
|
|
|
return matrix;
|
|
|
|
}
|
|
|
|
|
|
|
|
vec3d Vector_Add(vec3d &v1, vec3d &v2)
|
|
|
|
{
|
|
|
|
return { v1.x + v2.x, v1.y + v2.y, v1.z + v2.z };
|
|
|
|
}
|
|
|
|
|
|
|
|
vec3d Vector_Sub(vec3d &v1, vec3d &v2)
|
|
|
|
{
|
|
|
|
return { v1.x - v2.x, v1.y - v2.y, v1.z - v2.z };
|
|
|
|
}
|
|
|
|
|
|
|
|
vec3d Vector_Mul(vec3d &v1, float k)
|
|
|
|
{
|
|
|
|
return { v1.x * k, v1.y * k, v1.z * k };
|
|
|
|
}
|
|
|
|
|
|
|
|
vec3d Vector_Div(vec3d &v1, float k)
|
|
|
|
{
|
|
|
|
return { v1.x / k, v1.y / k, v1.z / k };
|
|
|
|
}
|
|
|
|
|
|
|
|
float Vector_DotProduct(vec3d &v1, vec3d &v2)
|
|
|
|
{
|
|
|
|
return v1.x*v2.x + v1.y*v2.y + v1.z * v2.z;
|
|
|
|
}
|
|
|
|
|
|
|
|
float Vector_Length(vec3d &v)
|
|
|
|
{
|
|
|
|
return sqrtf(Vector_DotProduct(v, v));
|
|
|
|
}
|
|
|
|
|
|
|
|
vec3d Vector_Normalise(vec3d &v)
|
|
|
|
{
|
|
|
|
float l = Vector_Length(v);
|
|
|
|
return { v.x / l, v.y / l, v.z / l };
|
|
|
|
}
|
|
|
|
|
|
|
|
vec3d Vector_CrossProduct(vec3d &v1, vec3d &v2)
|
|
|
|
{
|
|
|
|
vec3d v;
|
|
|
|
v.x = v1.y * v2.z - v1.z * v2.y;
|
|
|
|
v.y = v1.z * v2.x - v1.x * v2.z;
|
|
|
|
v.z = v1.x * v2.y - v1.y * v2.x;
|
|
|
|
return v;
|
|
|
|
}
|
|
|
|
|
|
|
|
vec3d Vector_IntersectPlane(vec3d &plane_p, vec3d &plane_n, vec3d &lineStart, vec3d &lineEnd, float &t)
|
|
|
|
{
|
|
|
|
plane_n = Vector_Normalise(plane_n);
|
|
|
|
float plane_d = -Vector_DotProduct(plane_n, plane_p);
|
|
|
|
float ad = Vector_DotProduct(lineStart, plane_n);
|
|
|
|
float bd = Vector_DotProduct(lineEnd, plane_n);
|
|
|
|
t = (-plane_d - ad) / (bd - ad);
|
|
|
|
vec3d lineStartToEnd = Vector_Sub(lineEnd, lineStart);
|
|
|
|
vec3d lineToIntersect = Vector_Mul(lineStartToEnd, t);
|
|
|
|
return Vector_Add(lineStart, lineToIntersect);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int Triangle_ClipAgainstPlane(vec3d plane_p, vec3d plane_n, triangle &in_tri, triangle &out_tri1, triangle &out_tri2)
|
|
|
|
{
|
|
|
|
// Make sure plane normal is indeed normal
|
|
|
|
plane_n = Vector_Normalise(plane_n);
|
|
|
|
|
|
|
|
// Return signed shortest distance from point to plane, plane normal must be normalised
|
|
|
|
auto dist = [&](vec3d &p)
|
|
|
|
{
|
|
|
|
vec3d n = Vector_Normalise(p);
|
|
|
|
return (plane_n.x * p.x + plane_n.y * p.y + plane_n.z * p.z - Vector_DotProduct(plane_n, plane_p));
|
|
|
|
};
|
|
|
|
|
|
|
|
// Create two temporary storage arrays to classify points either side of plane
|
|
|
|
// If distance sign is positive, point lies on "inside" of plane
|
|
|
|
vec3d* inside_points[3]; int nInsidePointCount = 0;
|
|
|
|
vec3d* outside_points[3]; int nOutsidePointCount = 0;
|
|
|
|
vec2d* inside_tex[3]; int nInsideTexCount = 0;
|
|
|
|
vec2d* outside_tex[3]; int nOutsideTexCount = 0;
|
|
|
|
|
|
|
|
|
|
|
|
// Get signed distance of each point in triangle to plane
|
|
|
|
float d0 = dist(in_tri.p[0]);
|
|
|
|
float d1 = dist(in_tri.p[1]);
|
|
|
|
float d2 = dist(in_tri.p[2]);
|
|
|
|
|
|
|
|
if (d0 >= 0) { inside_points[nInsidePointCount++] = &in_tri.p[0]; inside_tex[nInsideTexCount++] = &in_tri.uv[0]; }
|
|
|
|
else {
|
|
|
|
outside_points[nOutsidePointCount++] = &in_tri.p[0]; outside_tex[nOutsideTexCount++] = &in_tri.uv[0];
|
|
|
|
}
|
|
|
|
if (d1 >= 0) {
|
|
|
|
inside_points[nInsidePointCount++] = &in_tri.p[1]; inside_tex[nInsideTexCount++] = &in_tri.uv[1];
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
outside_points[nOutsidePointCount++] = &in_tri.p[1]; outside_tex[nOutsideTexCount++] = &in_tri.uv[1];
|
|
|
|
}
|
|
|
|
if (d2 >= 0) {
|
|
|
|
inside_points[nInsidePointCount++] = &in_tri.p[2]; inside_tex[nInsideTexCount++] = &in_tri.uv[2];
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
outside_points[nOutsidePointCount++] = &in_tri.p[2]; outside_tex[nOutsideTexCount++] = &in_tri.uv[2];
|
|
|
|
}
|
|
|
|
|
|
|
|
// Now classify triangle points, and break the input triangle into
|
|
|
|
// smaller output triangles if required. There are four possible
|
|
|
|
// outcomes...
|
|
|
|
|
|
|
|
if (nInsidePointCount == 0)
|
|
|
|
{
|
|
|
|
// All points lie on the outside of plane, so clip whole triangle
|
|
|
|
// It ceases to exist
|
|
|
|
|
|
|
|
return 0; // No returned triangles are valid
|
|
|
|
}
|
|
|
|
|
|
|
|
if (nInsidePointCount == 3)
|
|
|
|
{
|
|
|
|
// All points lie on the inside of plane, so do nothing
|
|
|
|
// and allow the triangle to simply pass through
|
|
|
|
out_tri1 = in_tri;
|
|
|
|
|
|
|
|
return 1; // Just the one returned original triangle is valid
|
|
|
|
}
|
|
|
|
|
|
|
|
if (nInsidePointCount == 1 && nOutsidePointCount == 2)
|
|
|
|
{
|
|
|
|
// Triangle should be clipped. As two points lie outside
|
|
|
|
// the plane, the triangle simply becomes a smaller triangle
|
|
|
|
|
|
|
|
// Copy appearance info to new triangle
|
|
|
|
out_tri1.col = in_tri.col;
|
|
|
|
|
|
|
|
// The inside point is valid, so keep that...
|
|
|
|
out_tri1.p[0] = *inside_points[0];
|
|
|
|
out_tri1.uv[0] = *inside_tex[0];
|
|
|
|
|
|
|
|
// but the two new points are at the locations where the
|
|
|
|
// original sides of the triangle (lines) intersect with the plane
|
|
|
|
float t;
|
|
|
|
out_tri1.p[1] = Vector_IntersectPlane(plane_p, plane_n, *inside_points[0], *outside_points[0], t);
|
|
|
|
out_tri1.uv[1].u = t * (outside_tex[0]->u - inside_tex[0]->u) + inside_tex[0]->u;
|
|
|
|
out_tri1.uv[1].v = t * (outside_tex[0]->v - inside_tex[0]->v) + inside_tex[0]->v;
|
|
|
|
out_tri1.uv[1].w = t * (outside_tex[0]->w - inside_tex[0]->w) + inside_tex[0]->w;
|
|
|
|
|
|
|
|
out_tri1.p[2] = Vector_IntersectPlane(plane_p, plane_n, *inside_points[0], *outside_points[1], t);
|
|
|
|
out_tri1.uv[2].u = t * (outside_tex[1]->u - inside_tex[0]->u) + inside_tex[0]->u;
|
|
|
|
out_tri1.uv[2].v = t * (outside_tex[1]->v - inside_tex[0]->v) + inside_tex[0]->v;
|
|
|
|
out_tri1.uv[2].w = t * (outside_tex[1]->w - inside_tex[0]->w) + inside_tex[0]->w;
|
|
|
|
|
|
|
|
return 1; // Return the newly formed single triangle
|
|
|
|
}
|
|
|
|
|
|
|
|
if (nInsidePointCount == 2 && nOutsidePointCount == 1)
|
|
|
|
{
|
|
|
|
// Triangle should be clipped. As two points lie inside the plane,
|
|
|
|
// the clipped triangle becomes a "quad". Fortunately, we can
|
|
|
|
// represent a quad with two new triangles
|
|
|
|
|
|
|
|
// Copy appearance info to new triangles
|
|
|
|
out_tri1.col = in_tri.col;
|
|
|
|
out_tri2.col = in_tri.col;
|
|
|
|
|
|
|
|
// The first triangle consists of the two inside points and a new
|
|
|
|
// point determined by the location where one side of the triangle
|
|
|
|
// intersects with the plane
|
|
|
|
out_tri1.p[0] = *inside_points[0];
|
|
|
|
out_tri1.p[1] = *inside_points[1];
|
|
|
|
out_tri1.uv[0] = *inside_tex[0];
|
|
|
|
out_tri1.uv[1] = *inside_tex[1];
|
|
|
|
|
|
|
|
float t;
|
|
|
|
out_tri1.p[2] = Vector_IntersectPlane(plane_p, plane_n, *inside_points[0], *outside_points[0], t);
|
|
|
|
out_tri1.uv[2].u = t * (outside_tex[0]->u - inside_tex[0]->u) + inside_tex[0]->u;
|
|
|
|
out_tri1.uv[2].v = t * (outside_tex[0]->v - inside_tex[0]->v) + inside_tex[0]->v;
|
|
|
|
out_tri1.uv[2].w = t * (outside_tex[0]->w - inside_tex[0]->w) + inside_tex[0]->w;
|
|
|
|
|
|
|
|
// The second triangle is composed of one of he inside points, a
|
|
|
|
// new point determined by the intersection of the other side of the
|
|
|
|
// triangle and the plane, and the newly created point above
|
|
|
|
out_tri2.p[0] = *inside_points[1];
|
|
|
|
out_tri2.uv[0] = *inside_tex[1];
|
|
|
|
out_tri2.p[1] = out_tri1.p[2];
|
|
|
|
out_tri2.uv[1] = out_tri1.uv[2];
|
|
|
|
out_tri2.p[2] = Vector_IntersectPlane(plane_p, plane_n, *inside_points[1], *outside_points[0], t);
|
|
|
|
out_tri2.uv[2].u = t * (outside_tex[0]->u - inside_tex[1]->u) + inside_tex[1]->u;
|
|
|
|
out_tri2.uv[2].v = t * (outside_tex[0]->v - inside_tex[1]->v) + inside_tex[1]->v;
|
|
|
|
out_tri2.uv[2].w = t * (outside_tex[0]->w - inside_tex[1]->w) + inside_tex[1]->w;
|
|
|
|
return 2; // Return two newly formed triangles which form a quad
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
public:
|
|
|
|
bool OnUserCreate() override
|
|
|
|
{
|
|
|
|
texture = new Decal(new Sprite("High.png"));
|
|
|
|
meshCube.LoadFromObjectFile("Artisans Hub.obj");
|
|
|
|
|
|
|
|
matProj=Matrix_MakeProjection(90.0f,(float)ScreenHeight() / (float)ScreenWidth(),0.1f,1000.0f);
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool OnUserUpdate(float fElapsedTime) override
|
|
|
|
{
|
|
|
|
if (GetKey(olc::DOWN).bHeld) {
|
|
|
|
pitch-=1*fElapsedTime;
|
|
|
|
}
|
|
|
|
if (GetKey(olc::UP).bHeld) {
|
|
|
|
pitch+=1*fElapsedTime;
|
|
|
|
}
|
|
|
|
vec3d vForward=Vector_Mul(vLookDir,20*fElapsedTime);
|
|
|
|
if (GetKey(olc::W).bHeld) {
|
|
|
|
vCamera=Vector_Add(vCamera,vForward);
|
|
|
|
}
|
|
|
|
if (GetKey(olc::S).bHeld) {
|
|
|
|
vCamera=Vector_Sub(vCamera,vForward);
|
|
|
|
}
|
|
|
|
if (GetKey(olc::A).bHeld) {
|
|
|
|
fYaw-=2*fElapsedTime;
|
|
|
|
}
|
|
|
|
if (GetKey(olc::D).bHeld) {
|
|
|
|
fYaw+=2*fElapsedTime;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Set up rotation matrices
|
|
|
|
mat4x4 matRotZ, matRotX, matTrans, matWorld;
|
|
|
|
|
|
|
|
matRotZ=Matrix_MakeRotationZ(fTheta*0.5f);
|
|
|
|
matRotX=Matrix_MakeRotationX(fTheta);
|
|
|
|
|
|
|
|
matTrans=Matrix_MakeTranslation(0.0f,0.0f,5.0f);
|
|
|
|
matWorld=Matrix_MakeIdentity();
|
|
|
|
matWorld=Matrix_MultiplyMatrix(matRotZ,matRotX);
|
|
|
|
matWorld=Matrix_MultiplyMatrix(matWorld,matTrans);
|
|
|
|
|
|
|
|
vec3d vUp={0,1,0};
|
|
|
|
vec3d vTarget={0,sinf(pitch),cosf(pitch)};
|
|
|
|
mat4x4 matCameraRot=Matrix_MakeRotationY(fYaw);
|
|
|
|
vLookDir=Matrix_MultiplyVector(matCameraRot,vTarget);
|
|
|
|
vTarget=Vector_Add(vCamera,vLookDir);
|
|
|
|
mat4x4 matCamera = Matrix_PointAt(vCamera,vTarget,vUp);
|
|
|
|
mat4x4 matView=Matrix_QuickInverse(matCamera);
|
|
|
|
|
|
|
|
std::vector<triangle>vecTrianglesToRaster;
|
|
|
|
|
|
|
|
// Draw Triangles
|
|
|
|
for (auto&tri : meshCube.tris)
|
|
|
|
{
|
|
|
|
triangle triProjected, triTransformed,triViewed;
|
|
|
|
|
|
|
|
triTransformed.p[0]=Matrix_MultiplyVector(matWorld,tri.p[0]);
|
|
|
|
triTransformed.p[1]=Matrix_MultiplyVector(matWorld,tri.p[1]);
|
|
|
|
triTransformed.p[2]=Matrix_MultiplyVector(matWorld,tri.p[2]);
|
|
|
|
triTransformed.uv[0]=tri.uv[0];
|
|
|
|
triTransformed.uv[1]=tri.uv[1];
|
|
|
|
triTransformed.uv[2]=tri.uv[2];
|
|
|
|
|
|
|
|
vec3d normal,line1,line2;
|
|
|
|
line1=Vector_Sub(triTransformed.p[1],triTransformed.p[0]);
|
|
|
|
line2=Vector_Sub(triTransformed.p[2],triTransformed.p[0]);
|
|
|
|
|
|
|
|
normal=Vector_CrossProduct(line1,line2);
|
|
|
|
normal=Vector_Normalise(normal);
|
|
|
|
|
|
|
|
vec3d vCameraRay=Vector_Sub(triTransformed.p[0],vCamera);
|
|
|
|
|
|
|
|
if (Vector_DotProduct(normal,vCameraRay)<0) {
|
|
|
|
vec3d light_dir=Vector_Mul(vLookDir,-1);
|
|
|
|
light_dir=Vector_Normalise(light_dir);
|
|
|
|
|
|
|
|
float dp = std::max(0.7f,Vector_DotProduct(light_dir,normal));
|
|
|
|
|
|
|
|
triViewed.p[0]=Matrix_MultiplyVector(matView,triTransformed.p[0]);
|
|
|
|
triViewed.p[1]=Matrix_MultiplyVector(matView,triTransformed.p[1]);
|
|
|
|
triViewed.p[2]=Matrix_MultiplyVector(matView,triTransformed.p[2]);
|
|
|
|
triViewed.uv[0]=triTransformed.uv[0];
|
|
|
|
triViewed.uv[1]=triTransformed.uv[1];
|
|
|
|
triViewed.uv[2]=triTransformed.uv[2];
|
|
|
|
triViewed.col=Pixel(255*dp*dp,255*dp*dp,255*dp*dp);
|
|
|
|
|
|
|
|
int nClippedTriangles = 0;
|
|
|
|
triangle clipped[2];
|
|
|
|
nClippedTriangles = Triangle_ClipAgainstPlane({ 0.0f, 0.0f, 0.1f }, { 0.0f, 0.0f, 1.0f }, triViewed, clipped[0], clipped[1]);
|
|
|
|
|
|
|
|
for (int n=0;n<nClippedTriangles;n++) {
|
|
|
|
// Project triangles from 3D --> 2D
|
|
|
|
triProjected.p[0]=Matrix_MultiplyVector(matProj,clipped[n].p[0]);
|
|
|
|
triProjected.p[1]=Matrix_MultiplyVector(matProj,clipped[n].p[1]);
|
|
|
|
triProjected.p[2]=Matrix_MultiplyVector(matProj,clipped[n].p[2]);
|
|
|
|
triProjected.col=clipped[n].col;
|
|
|
|
triProjected.uv[0]=clipped[n].uv[0];
|
|
|
|
triProjected.uv[1]=clipped[n].uv[1];
|
|
|
|
triProjected.uv[2]=clipped[n].uv[2];
|
|
|
|
triProjected.uv[0].u = triProjected.uv[0].u / triProjected.p[0].w;
|
|
|
|
triProjected.uv[1].u = triProjected.uv[1].u / triProjected.p[1].w;
|
|
|
|
triProjected.uv[2].u = triProjected.uv[2].u / triProjected.p[2].w;
|
|
|
|
|
|
|
|
triProjected.uv[0].v = triProjected.uv[0].v / triProjected.p[0].w;
|
|
|
|
triProjected.uv[1].v = triProjected.uv[1].v / triProjected.p[1].w;
|
|
|
|
triProjected.uv[2].v = triProjected.uv[2].v / triProjected.p[2].w;
|
|
|
|
|
|
|
|
triProjected.uv[0].w = 1.0f / triProjected.p[0].w;
|
|
|
|
triProjected.uv[1].w = 1.0f / triProjected.p[1].w;
|
|
|
|
triProjected.uv[2].w = 1.0f / triProjected.p[2].w;
|
|
|
|
|
|
|
|
|
|
|
|
triProjected.p[0]=Vector_Div(triProjected.p[0],triProjected.p[0].w);
|
|
|
|
triProjected.p[1]=Vector_Div(triProjected.p[1],triProjected.p[1].w);
|
|
|
|
triProjected.p[2]=Vector_Div(triProjected.p[2],triProjected.p[2].w);
|
|
|
|
|
|
|
|
triProjected.p[0].x*=-1.0f;
|
|
|
|
triProjected.p[1].x*=-1.0f;
|
|
|
|
triProjected.p[2].x*=-1.0f;
|
|
|
|
triProjected.p[0].y*=-1.0f;
|
|
|
|
triProjected.p[1].y*=-1.0f;
|
|
|
|
triProjected.p[2].y*=-1.0f;
|
|
|
|
|
|
|
|
// Scale into view
|
|
|
|
vec3d vOffsetView={1,1,0};
|
|
|
|
triProjected.p[0] = Vector_Add(triProjected.p[0],vOffsetView);
|
|
|
|
triProjected.p[1] = Vector_Add(triProjected.p[1],vOffsetView);
|
|
|
|
triProjected.p[2] = Vector_Add(triProjected.p[2],vOffsetView);
|
|
|
|
triProjected.p[0].x *= 0.5f * (float)ScreenWidth();
|
|
|
|
triProjected.p[0].y *= 0.5f * (float)ScreenHeight();
|
|
|
|
triProjected.p[1].x *= 0.5f * (float)ScreenWidth();
|
|
|
|
triProjected.p[1].y *= 0.5f * (float)ScreenHeight();
|
|
|
|
triProjected.p[2].x *= 0.5f * (float)ScreenWidth();
|
|
|
|
triProjected.p[2].y *= 0.5f * (float)ScreenHeight();
|
|
|
|
|
|
|
|
vecTrianglesToRaster.push_back(triProjected);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//std::sort(vecTrianglesToRaster.begin(),vecTrianglesToRaster.end(),[](triangle&t1,triangle&t2){return (t1.p[0].z+t1.p[1].z+t1.p[2].z)/3.0f>(t2.p[0].z+t2.p[1].z+t2.p[2].z)/3.0f;});
|
|
|
|
ClearBuffer(BLACK,true);
|
|
|
|
int triRenderCount=0;
|
|
|
|
for (auto&triToRaster:vecTrianglesToRaster) {
|
|
|
|
|
|
|
|
triangle clipped[2];
|
|
|
|
std::list<triangle>listTriangles;
|
|
|
|
listTriangles.push_back(triToRaster);
|
|
|
|
int nNewTriangles=1;
|
|
|
|
|
|
|
|
for (int p = 0; p < 4; p++)
|
|
|
|
{
|
|
|
|
int nTrisToAdd = 0;
|
|
|
|
while (nNewTriangles > 0)
|
|
|
|
{
|
|
|
|
// Take triangle from front of queue
|
|
|
|
triangle test = listTriangles.front();
|
|
|
|
listTriangles.pop_front();
|
|
|
|
nNewTriangles--;
|
|
|
|
|
|
|
|
// Clip it against a plane. We only need to test each
|
|
|
|
// subsequent plane, against subsequent new triangles
|
|
|
|
// as all triangles after a plane clip are guaranteed
|
|
|
|
// to lie on the inside of the plane. I like how this
|
|
|
|
// comment is almost completely and utterly justified
|
|
|
|
switch (p)
|
|
|
|
{
|
|
|
|
case 0: nTrisToAdd = Triangle_ClipAgainstPlane({ 0.0f, 0.0f, 0.0f }, { 0.0f, 1.0f, 0.0f }, test, clipped[0], clipped[1]); break;
|
|
|
|
case 1: nTrisToAdd = Triangle_ClipAgainstPlane({ 0.0f, (float)ScreenHeight() - 1, 0.0f }, { 0.0f, -1.0f, 0.0f }, test, clipped[0], clipped[1]); break;
|
|
|
|
case 2: nTrisToAdd = Triangle_ClipAgainstPlane({ 0.0f, 0.0f, 0.0f }, { 1.0f, 0.0f, 0.0f }, test, clipped[0], clipped[1]); break;
|
|
|
|
case 3: nTrisToAdd = Triangle_ClipAgainstPlane({ (float)ScreenWidth() - 1, 0.0f, 0.0f }, { -1.0f, 0.0f, 0.0f }, test, clipped[0], clipped[1]); break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Clipping may yield a variable number of triangles, so
|
|
|
|
// add these new ones to the back of the queue for subsequent
|
|
|
|
// clipping against next planes
|
|
|
|
for (int w = 0; w < nTrisToAdd; w++)
|
|
|
|
listTriangles.push_back(clipped[w]);
|
|
|
|
}
|
|
|
|
nNewTriangles = listTriangles.size();
|
|
|
|
}
|
|
|
|
|
|
|
|
for (auto&t:listTriangles) {
|
|
|
|
// Rasterize triangle
|
|
|
|
SetDecalStructure(DecalStructure::LIST);
|
|
|
|
SetDecalMode(DecalMode::NORMAL);
|
|
|
|
DrawPolygonDecal(texture,{
|
|
|
|
{t.p[0].x, t.p[0].y},
|
|
|
|
{t.p[1].x, t.p[1].y},
|
|
|
|
{t.p[2].x, t.p[2].y}
|
|
|
|
},{
|
|
|
|
{t.uv[0].u,t.uv[0].v},
|
|
|
|
{t.uv[1].u,t.uv[1].v},
|
|
|
|
{t.uv[2].u,t.uv[2].v},
|
|
|
|
},{t.uv[0].w,t.uv[1].w,t.uv[2].w},{t.p[0].z,t.p[1].z,t.p[2].z},{t.col,t.col,t.col});
|
|
|
|
/*SetDecalMode(DecalMode::WIREFRAME);
|
|
|
|
DrawPolygonDecal(nullptr,{
|
|
|
|
{t.p[0].x, t.p[0].y},
|
|
|
|
{t.p[1].x, t.p[1].y},
|
|
|
|
{t.p[2].x, t.p[2].y}
|
|
|
|
},{
|
|
|
|
{0,0},
|
|
|
|
{0,0},
|
|
|
|
{0,0},
|
|
|
|
},WHITE);*/
|
|
|
|
SetDecalStructure(DecalStructure::FAN);
|
|
|
|
triRenderCount++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
SetDecalMode(DecalMode::NORMAL);
|
|
|
|
DrawStringDecal({0,0},"Triangles: "+std::to_string(triRenderCount),WHITE,{2,2});
|
|
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int main()
|
|
|
|
{
|
|
|
|
olcEngine3D demo;
|
|
|
|
if (demo.Construct(1280, 720, 1, 1))
|
|
|
|
demo.Start();
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|