git-svn-id: https://jmonkeyengine.googlecode.com/svn/trunk@9297 75d07b2b-3a1a-0410-a2c5-0572b91ccdca3.0
parent
2966b6a7b0
commit
cf9d5b5ebc
@ -1,359 +0,0 @@ |
||||
package com.jme3.util; |
||||
|
||||
|
||||
/** |
||||
* The wrapper for the primitive type {@code int}. |
||||
* <p> |
||||
* As with the specification, this implementation relies on code laid out in <a |
||||
* href="http://www.hackersdelight.org/">Henry S. Warren, Jr.'s Hacker's |
||||
* Delight, (Addison Wesley, 2002)</a> as well as <a |
||||
* href="http://aggregate.org/MAGIC/">The Aggregate's Magic Algorithms</a>. |
||||
* |
||||
* @see java.lang.Number |
||||
* @since 1.1 |
||||
*/ |
||||
public final class FastInteger { |
||||
|
||||
/** |
||||
* Constant for the maximum {@code int} value, 2<sup>31</sup>-1. |
||||
*/ |
||||
public static final int MAX_VALUE = 0x7FFFFFFF; |
||||
|
||||
/** |
||||
* Constant for the minimum {@code int} value, -2<sup>31</sup>. |
||||
*/ |
||||
public static final int MIN_VALUE = 0x80000000; |
||||
|
||||
/** |
||||
* Constant for the number of bits needed to represent an {@code int} in |
||||
* two's complement form. |
||||
* |
||||
* @since 1.5 |
||||
*/ |
||||
public static final int SIZE = 32; |
||||
|
||||
/* |
||||
* Progressively smaller decimal order of magnitude that can be represented |
||||
* by an instance of Integer. Used to help compute the String |
||||
* representation. |
||||
*/ |
||||
private static final int[] decimalScale = new int[] { 1000000000, 100000000, |
||||
10000000, 1000000, 100000, 10000, 1000, 100, 10, 1 }; |
||||
|
||||
/** |
||||
* Converts the specified integer into its decimal string representation. |
||||
* The returned string is a concatenation of a minus sign if the number is |
||||
* negative and characters from '0' to '9'. |
||||
* |
||||
* @param value |
||||
* the integer to convert. |
||||
* @return the decimal string representation of {@code value}. |
||||
*/ |
||||
public static boolean toCharArray(int value, char[] output) { |
||||
if (value == 0) |
||||
{ |
||||
output[0] = '0'; |
||||
output[1] = 0; |
||||
return true; |
||||
} |
||||
|
||||
// Faster algorithm for smaller Integers
|
||||
if (value < 1000 && value > -1000) { |
||||
|
||||
int positive_value = value < 0 ? -value : value; |
||||
int first_digit = 0; |
||||
if (value < 0) { |
||||
output[0] = '-'; |
||||
first_digit++; |
||||
} |
||||
int last_digit = first_digit; |
||||
int quot = positive_value; |
||||
do { |
||||
int res = quot / 10; |
||||
int digit_value = quot - ((res << 3) + (res << 1)); |
||||
digit_value += '0'; |
||||
output[last_digit++] = (char) digit_value; |
||||
quot = res; |
||||
} while (quot != 0); |
||||
|
||||
int count = last_digit--; |
||||
do { |
||||
char tmp = output[last_digit]; |
||||
output[last_digit--] = output[first_digit]; |
||||
output[first_digit++] = tmp; |
||||
} while (first_digit < last_digit); |
||||
output[count] = 0; |
||||
return true; |
||||
} |
||||
if (value == MIN_VALUE) { |
||||
System.arraycopy("-2147483648".toCharArray(), 0, output, 0, 12); |
||||
output[12] = 0; |
||||
return true; |
||||
} |
||||
|
||||
|
||||
int positive_value = value < 0 ? -value : value; |
||||
byte first_digit = 0; |
||||
if (value < 0) { |
||||
output[0] = '-'; |
||||
first_digit++; |
||||
} |
||||
byte last_digit = first_digit; |
||||
byte count; |
||||
int number; |
||||
boolean start = false; |
||||
for (int i = 0; i < 9; i++) { |
||||
count = 0; |
||||
if (positive_value < (number = decimalScale[i])) { |
||||
if (start) { |
||||
output[last_digit++] = '0'; |
||||
} |
||||
continue; |
||||
} |
||||
|
||||
if (i > 0) { |
||||
number = (decimalScale[i] << 3); |
||||
if (positive_value >= number) { |
||||
positive_value -= number; |
||||
count += 8; |
||||
} |
||||
number = (decimalScale[i] << 2); |
||||
if (positive_value >= number) { |
||||
positive_value -= number; |
||||
count += 4; |
||||
} |
||||
} |
||||
number = (decimalScale[i] << 1); |
||||
if (positive_value >= number) { |
||||
positive_value -= number; |
||||
count += 2; |
||||
} |
||||
if (positive_value >= decimalScale[i]) { |
||||
positive_value -= decimalScale[i]; |
||||
count++; |
||||
} |
||||
if (count > 0 && !start) { |
||||
start = true; |
||||
} |
||||
if (start) { |
||||
output[last_digit++] = (char) (count + '0'); |
||||
} |
||||
} |
||||
|
||||
output[last_digit++] = (char) (positive_value + '0'); |
||||
output[last_digit] = 0; |
||||
count = last_digit--; |
||||
return true; |
||||
} |
||||
|
||||
|
||||
/** |
||||
* Determines the highest (leftmost) bit of the specified integer that is 1 |
||||
* and returns the bit mask value for that bit. This is also referred to as |
||||
* the Most Significant 1 Bit. Returns zero if the specified integer is |
||||
* zero. |
||||
* |
||||
* @param i |
||||
* the integer to examine. |
||||
* @return the bit mask indicating the highest 1 bit in {@code i}. |
||||
* @since 1.5 |
||||
*/ |
||||
public static int highestOneBit(int i) { |
||||
i |= (i >> 1); |
||||
i |= (i >> 2); |
||||
i |= (i >> 4); |
||||
i |= (i >> 8); |
||||
i |= (i >> 16); |
||||
return (i & ~(i >>> 1)); |
||||
} |
||||
|
||||
/** |
||||
* Determines the lowest (rightmost) bit of the specified integer that is 1 |
||||
* and returns the bit mask value for that bit. This is also referred |
||||
* to as the Least Significant 1 Bit. Returns zero if the specified integer |
||||
* is zero. |
||||
* |
||||
* @param i |
||||
* the integer to examine. |
||||
* @return the bit mask indicating the lowest 1 bit in {@code i}. |
||||
* @since 1.5 |
||||
*/ |
||||
public static int lowestOneBit(int i) { |
||||
return (i & (-i)); |
||||
} |
||||
|
||||
/** |
||||
* Determines the number of leading zeros in the specified integer prior to |
||||
* the {@link #highestOneBit(int) highest one bit}. |
||||
* |
||||
* @param i |
||||
* the integer to examine. |
||||
* @return the number of leading zeros in {@code i}. |
||||
* @since 1.5 |
||||
*/ |
||||
public static int numberOfLeadingZeros(int i) { |
||||
i |= i >> 1; |
||||
i |= i >> 2; |
||||
i |= i >> 4; |
||||
i |= i >> 8; |
||||
i |= i >> 16; |
||||
return bitCount(~i); |
||||
} |
||||
|
||||
/** |
||||
* Determines the number of trailing zeros in the specified integer after |
||||
* the {@link #lowestOneBit(int) lowest one bit}. |
||||
* |
||||
* @param i |
||||
* the integer to examine. |
||||
* @return the number of trailing zeros in {@code i}. |
||||
* @since 1.5 |
||||
*/ |
||||
public static int numberOfTrailingZeros(int i) { |
||||
return bitCount((i & -i) - 1); |
||||
} |
||||
|
||||
/** |
||||
* Counts the number of 1 bits in the specified integer; this is also |
||||
* referred to as population count. |
||||
* |
||||
* @param i |
||||
* the integer to examine. |
||||
* @return the number of 1 bits in {@code i}. |
||||
* @since 1.5 |
||||
*/ |
||||
public static int bitCount(int i) { |
||||
i -= ((i >> 1) & 0x55555555); |
||||
i = (i & 0x33333333) + ((i >> 2) & 0x33333333); |
||||
i = (((i >> 4) + i) & 0x0F0F0F0F); |
||||
i += (i >> 8); |
||||
i += (i >> 16); |
||||
return (i & 0x0000003F); |
||||
} |
||||
|
||||
/** |
||||
* Rotates the bits of the specified integer to the left by the specified |
||||
* number of bits. |
||||
* |
||||
* @param i |
||||
* the integer value to rotate left. |
||||
* @param distance |
||||
* the number of bits to rotate. |
||||
* @return the rotated value. |
||||
* @since 1.5 |
||||
*/ |
||||
public static int rotateLeft(int i, int distance) { |
||||
if (distance == 0) { |
||||
return i; |
||||
} |
||||
/* |
||||
* According to JLS3, 15.19, the right operand of a shift is always |
||||
* implicitly masked with 0x1F, which the negation of 'distance' is |
||||
* taking advantage of. |
||||
*/ |
||||
return ((i << distance) | (i >>> (-distance))); |
||||
} |
||||
|
||||
/** |
||||
* Rotates the bits of the specified integer to the right by the specified |
||||
* number of bits. |
||||
* |
||||
* @param i |
||||
* the integer value to rotate right. |
||||
* @param distance |
||||
* the number of bits to rotate. |
||||
* @return the rotated value. |
||||
* @since 1.5 |
||||
*/ |
||||
public static int rotateRight(int i, int distance) { |
||||
if (distance == 0) { |
||||
return i; |
||||
} |
||||
/* |
||||
* According to JLS3, 15.19, the right operand of a shift is always |
||||
* implicitly masked with 0x1F, which the negation of 'distance' is |
||||
* taking advantage of. |
||||
*/ |
||||
return ((i >>> distance) | (i << (-distance))); |
||||
} |
||||
|
||||
/** |
||||
* Reverses the order of the bytes of the specified integer. |
||||
* |
||||
* @param i |
||||
* the integer value for which to reverse the byte order. |
||||
* @return the reversed value. |
||||
* @since 1.5 |
||||
*/ |
||||
public static int reverseBytes(int i) { |
||||
int b3 = i >>> 24; |
||||
int b2 = (i >>> 8) & 0xFF00; |
||||
int b1 = (i & 0xFF00) << 8; |
||||
int b0 = i << 24; |
||||
return (b0 | b1 | b2 | b3); |
||||
} |
||||
|
||||
/** |
||||
* Reverses the order of the bits of the specified integer. |
||||
* |
||||
* @param i |
||||
* the integer value for which to reverse the bit order. |
||||
* @return the reversed value. |
||||
* @since 1.5 |
||||
*/ |
||||
public static int reverse(int i) { |
||||
// From Hacker's Delight, 7-1, Figure 7-1
|
||||
i = (i & 0x55555555) << 1 | (i >> 1) & 0x55555555; |
||||
i = (i & 0x33333333) << 2 | (i >> 2) & 0x33333333; |
||||
i = (i & 0x0F0F0F0F) << 4 | (i >> 4) & 0x0F0F0F0F; |
||||
return reverseBytes(i); |
||||
} |
||||
|
||||
/** |
||||
* Returns the value of the {@code signum} function for the specified |
||||
* integer. |
||||
* |
||||
* @param i |
||||
* the integer value to check. |
||||
* @return -1 if {@code i} is negative, 1 if {@code i} is positive, 0 if |
||||
* {@code i} is zero. |
||||
* @since 1.5 |
||||
*/ |
||||
public static int signum(int i) { |
||||
return (i == 0 ? 0 : (i < 0 ? -1 : 1)); |
||||
} |
||||
|
||||
/** |
||||
* Returns a {@code Integer} instance for the specified integer value. |
||||
* <p> |
||||
* If it is not necessary to get a new {@code Integer} instance, it is |
||||
* recommended to use this method instead of the constructor, since it |
||||
* maintains a cache of instances which may result in better performance. |
||||
* |
||||
* @param i |
||||
* the integer value to store in the instance. |
||||
* @return a {@code Integer} instance containing {@code i}. |
||||
* @since 1.5 |
||||
*/ |
||||
public static Integer valueOf(int i) { |
||||
if (i < -128 || i > 127) { |
||||
return new Integer(i); |
||||
} |
||||
return valueOfCache.CACHE [i+128]; |
||||
|
||||
} |
||||
|
||||
static class valueOfCache { |
||||
/** |
||||
* <p> |
||||
* A cache of instances used by {@link Integer#valueOf(int)} and auto-boxing. |
||||
*/ |
||||
static final Integer[] CACHE = new Integer[256]; |
||||
|
||||
static { |
||||
for(int i=-128; i<=127; i++) { |
||||
CACHE[i+128] = new Integer(i); |
||||
} |
||||
} |
||||
} |
||||
} |
@ -1,431 +0,0 @@ |
||||
package jme3tools.android; |
||||
|
||||
import java.util.Random; |
||||
|
||||
/** |
||||
* Fixed point maths class. This can be tailored for specific needs by |
||||
* changing the bits allocated to the 'fraction' part (see <code>FIXED_POINT |
||||
* </code>, which would also require <code>SIN_PRECALC</code> and <code> |
||||
* COS_PRECALC</code> updating). |
||||
* |
||||
* <p><a href="http://blog.numfum.com/2007/09/java-fixed-point-maths.html"> |
||||
* http://blog.numfum.com/2007/09/java-fixed-point-maths.html</a></p>
|
||||
* |
||||
* @version 1.0 |
||||
* @author CW |
||||
* |
||||
* @deprecated Most devices with OpenGL ES 2.0 have an FPU. Please use |
||||
* floats instead of this class for decimal math. |
||||
*/ |
||||
@Deprecated |
||||
public final class Fixed { |
||||
|
||||
/** |
||||
* Number of bits used for 'fraction'. |
||||
*/ |
||||
public static final int FIXED_POINT = 16; |
||||
/** |
||||
* Decimal one as represented by the Fixed class. |
||||
*/ |
||||
public static final int ONE = 1 << FIXED_POINT; |
||||
/** |
||||
* Half in fixed point. |
||||
*/ |
||||
public static final int HALF = ONE >> 1; |
||||
/** |
||||
* Quarter circle resolution for trig functions (should be a power of |
||||
* two). This is the number of discrete steps in 90 degrees. |
||||
*/ |
||||
public static final int QUARTER_CIRCLE = 64; |
||||
/** |
||||
* Mask used to limit angles to one revolution. If a quarter circle is 64 |
||||
* (i.e. 90 degrees is broken into 64 steps) then the mask is 255. |
||||
*/ |
||||
public static final int FULL_CIRCLE_MASK = QUARTER_CIRCLE * 4 - 1; |
||||
/** |
||||
* The trig table is generated at a higher precision than the typical |
||||
* 16.16 format used for the rest of the fixed point maths. The table |
||||
* values are then shifted to match the actual fixed point used. |
||||
*/ |
||||
private static final int TABLE_SHIFT = 30; |
||||
/** |
||||
* Equivalent to: sin((2 * PI) / (QUARTER_CIRCLE * 4)) |
||||
* <p> |
||||
* Note: if either QUARTER_CIRCLE or TABLE_SHIFT is changed this value |
||||
* will need recalculating (put the above formular into a calculator set |
||||
* radians, then shift the result by <code>TABLE_SHIFT</code>). |
||||
*/ |
||||
private static final int SIN_PRECALC = 26350943; |
||||
/** |
||||
* Equivalent to: cos((2 * PI) / (QUARTER_CIRCLE * 4)) * 2 |
||||
* |
||||
* Note: if either QUARTER_CIRCLE or TABLE_SHIFT is changed this value |
||||
* will need recalculating ((put the above formular into a calculator set |
||||
* radians, then shift the result by <code>TABLE_SHIFT</code>). |
||||
*/ |
||||
private static final int COS_PRECALC = 2146836866; |
||||
/** |
||||
* One quarter sine wave as fixed point values. |
||||
*/ |
||||
private static final int[] SINE_TABLE = new int[QUARTER_CIRCLE + 1]; |
||||
/** |
||||
* Scale value for indexing ATAN_TABLE[]. |
||||
*/ |
||||
private static final int ATAN_SHIFT; |
||||
/** |
||||
* Reverse atan lookup table. |
||||
*/ |
||||
private static final byte[] ATAN_TABLE; |
||||
/** |
||||
* ATAN_TABLE.length |
||||
*/ |
||||
private static final int ATAN_TABLE_LEN; |
||||
|
||||
/* |
||||
* Generates the tables and fills in any remaining static ints. |
||||
*/ |
||||
static { |
||||
// Generate the sine table using recursive synthesis.
|
||||
SINE_TABLE[0] = 0; |
||||
SINE_TABLE[1] = SIN_PRECALC; |
||||
for (int n = 2; n < QUARTER_CIRCLE + 1; n++) { |
||||
SINE_TABLE[n] = (int) (((long) SINE_TABLE[n - 1] * COS_PRECALC) >> TABLE_SHIFT) - SINE_TABLE[n - 2]; |
||||
} |
||||
// Scale the values to the fixed point format used.
|
||||
for (int n = 0; n < QUARTER_CIRCLE + 1; n++) { |
||||
SINE_TABLE[n] = SINE_TABLE[n] + (1 << (TABLE_SHIFT - FIXED_POINT - 1)) >> TABLE_SHIFT - FIXED_POINT; |
||||
} |
||||
|
||||
// Calculate a shift used to scale atan lookups
|
||||
int rotl = 0; |
||||
int tan0 = tan(0); |
||||
int tan1 = tan(1); |
||||
while (rotl < 32) { |
||||
if ((tan1 >>= 1) > (tan0 >>= 1)) { |
||||
rotl++; |
||||
} else { |
||||
break; |
||||
} |
||||
} |
||||
ATAN_SHIFT = rotl; |
||||
// Create the a table of tan values
|
||||
int[] lut = new int[QUARTER_CIRCLE]; |
||||
for (int n = 0; n < QUARTER_CIRCLE; n++) { |
||||
lut[n] = tan(n) >> rotl; |
||||
} |
||||
ATAN_TABLE_LEN = lut[QUARTER_CIRCLE - 1]; |
||||
// Then from the tan values create a reverse lookup
|
||||
ATAN_TABLE = new byte[ATAN_TABLE_LEN]; |
||||
for (byte n = 0; n < QUARTER_CIRCLE - 1; n++) { |
||||
int min = lut[n]; |
||||
int max = lut[n + 1]; |
||||
for (int i = min; i < max; i++) { |
||||
ATAN_TABLE[i] = n; |
||||
} |
||||
} |
||||
} |
||||
/** |
||||
* How many decimal places to use when converting a fixed point value to |
||||
* a decimal string. |
||||
* |
||||
* @see #toString |
||||
*/ |
||||
private static final int STRING_DECIMAL_PLACES = 2; |
||||
/** |
||||
* Value to add in order to round down a fixed point number when |
||||
* converting to a string. |
||||
*/ |
||||
private static final int STRING_DECIMAL_PLACES_ROUND; |
||||
|
||||
static { |
||||
int i = 10; |
||||
for (int n = 1; n < STRING_DECIMAL_PLACES; n++) { |
||||
i *= i; |
||||
} |
||||
if (STRING_DECIMAL_PLACES == 0) { |
||||
STRING_DECIMAL_PLACES_ROUND = ONE / 2; |
||||
} else { |
||||
STRING_DECIMAL_PLACES_ROUND = ONE / (2 * i); |
||||
} |
||||
} |
||||
/** |
||||
* Random number generator. The standard <code>java.utll.Random</code> is |
||||
* used since it is available to both J2ME and J2SE. If a guaranteed |
||||
* sequence is required this would not be adequate. |
||||
*/ |
||||
private static Random rng = null; |
||||
|
||||
/** |
||||
* Fixed can't be instantiated. |
||||
*/ |
||||
private Fixed() { |
||||
} |
||||
|
||||
/** |
||||
* Returns an integer as a fixed point value. |
||||
*/ |
||||
public static int intToFixed(int n) { |
||||
return n << FIXED_POINT; |
||||
} |
||||
|
||||
/** |
||||
* Returns a fixed point value as a float. |
||||
*/ |
||||
public static float fixedToFloat(int i) { |
||||
float fp = i; |
||||
fp = fp / ((float) ONE); |
||||
return fp; |
||||
} |
||||
|
||||
/** |
||||
* Returns a float as a fixed point value. |
||||
*/ |
||||
public static int floatToFixed(float fp) { |
||||
return (int) (fp * ((float) ONE)); |
||||
} |
||||
|
||||
/** |
||||
* Converts a fixed point value into a decimal string. |
||||
*/ |
||||
public static String toString(int n) { |
||||
StringBuffer sb = new StringBuffer(16); |
||||
sb.append((n += STRING_DECIMAL_PLACES_ROUND) >> FIXED_POINT); |
||||
sb.append('.'); |
||||
n &= ONE - 1; |
||||
for (int i = 0; i < STRING_DECIMAL_PLACES; i++) { |
||||
n *= 10; |
||||
sb.append((n / ONE) % 10); |
||||
} |
||||
return sb.toString(); |
||||
} |
||||
|
||||
/** |
||||
* Multiplies two fixed point values and returns the result. |
||||
*/ |
||||
public static int mul(int a, int b) { |
||||
return (int) ((long) a * (long) b >> FIXED_POINT); |
||||
} |
||||
|
||||
/** |
||||
* Divides two fixed point values and returns the result. |
||||
*/ |
||||
public static int div(int a, int b) { |
||||
return (int) (((long) a << FIXED_POINT * 2) / (long) b >> FIXED_POINT); |
||||
} |
||||
|
||||
/** |
||||
* Sine of an angle. |
||||
* |
||||
* @see #QUARTER_CIRCLE |
||||
*/ |
||||
public static int sin(int n) { |
||||
n &= FULL_CIRCLE_MASK; |
||||
if (n < QUARTER_CIRCLE * 2) { |
||||
if (n < QUARTER_CIRCLE) { |
||||
return SINE_TABLE[n]; |
||||
} else { |
||||
return SINE_TABLE[QUARTER_CIRCLE * 2 - n]; |
||||
} |
||||
} else { |
||||
if (n < QUARTER_CIRCLE * 3) { |
||||
return -SINE_TABLE[n - QUARTER_CIRCLE * 2]; |
||||
} else { |
||||
return -SINE_TABLE[QUARTER_CIRCLE * 4 - n]; |
||||
} |
||||
} |
||||
} |
||||
|
||||
/** |
||||
* Cosine of an angle. |
||||
* |
||||
* @see #QUARTER_CIRCLE |
||||
*/ |
||||
public static int cos(int n) { |
||||
n &= FULL_CIRCLE_MASK; |
||||
if (n < QUARTER_CIRCLE * 2) { |
||||
if (n < QUARTER_CIRCLE) { |
||||
return SINE_TABLE[QUARTER_CIRCLE - n]; |
||||
} else { |
||||
return -SINE_TABLE[n - QUARTER_CIRCLE]; |
||||
} |
||||
} else { |
||||
if (n < QUARTER_CIRCLE * 3) { |
||||
return -SINE_TABLE[QUARTER_CIRCLE * 3 - n]; |
||||
} else { |
||||
return SINE_TABLE[n - QUARTER_CIRCLE * 3]; |
||||
} |
||||
} |
||||
} |
||||
|
||||
/** |
||||
* Tangent of an angle. |
||||
* |
||||
* @see #QUARTER_CIRCLE |
||||
*/ |
||||
public static int tan(int n) { |
||||
return div(sin(n), cos(n)); |
||||
} |
||||
|
||||
/** |
||||
* Returns the arc tangent of an angle. |
||||
*/ |
||||
public static int atan(int n) { |
||||
n = n + (1 << (ATAN_SHIFT - 1)) >> ATAN_SHIFT; |
||||
if (n < 0) { |
||||
if (n <= -ATAN_TABLE_LEN) { |
||||
return -(QUARTER_CIRCLE - 1); |
||||
} |
||||
return -ATAN_TABLE[-n]; |
||||
} else { |
||||
if (n >= ATAN_TABLE_LEN) { |
||||
return QUARTER_CIRCLE - 1; |
||||
} |
||||
return ATAN_TABLE[n]; |
||||
} |
||||
} |
||||
|
||||
/** |
||||
* Returns the polar angle of a rectangular coordinate. |
||||
*/ |
||||
public static int atan(int x, int y) { |
||||
int n = atan(div(x, abs(y) + 1)); // kludge to prevent ArithmeticException
|
||||
if (y > 0) { |
||||
return n; |
||||
} |
||||
if (y < 0) { |
||||
if (x < 0) { |
||||
return -QUARTER_CIRCLE * 2 - n; |
||||
} |
||||
if (x > 0) { |
||||
return QUARTER_CIRCLE * 2 - n; |
||||
} |
||||
return QUARTER_CIRCLE * 2; |
||||
} |
||||
if (x > 0) { |
||||
return QUARTER_CIRCLE; |
||||
} |
||||
return -QUARTER_CIRCLE; |
||||
} |
||||
|
||||
/** |
||||
* Rough calculation of the hypotenuse. Whilst not accurate it is very fast. |
||||
* <p> |
||||
* Derived from a piece in Graphics Gems. |
||||
*/ |
||||
public static int hyp(int x1, int y1, int x2, int y2) { |
||||
if ((x2 -= x1) < 0) { |
||||
x2 = -x2; |
||||
} |
||||
if ((y2 -= y1) < 0) { |
||||
y2 = -y2; |
||||
} |
||||
return x2 + y2 - (((x2 > y2) ? y2 : x2) >> 1); |
||||
} |
||||
|
||||
/** |
||||
* Fixed point square root. |
||||
* <p> |
||||
* Derived from a 1993 Usenet algorithm posted by Christophe Meessen. |
||||
*/ |
||||
public static int sqrt(int n) { |
||||
if (n <= 0) { |
||||
return 0; |
||||
} |
||||
long sum = 0; |
||||
int bit = 0x40000000; |
||||
while (bit >= 0x100) { // lower values give more accurate results
|
||||
long tmp = sum | bit; |
||||
if (n >= tmp) { |
||||
n -= tmp; |
||||
sum = tmp + bit; |
||||
} |
||||
bit >>= 1; |
||||
n <<= 1; |
||||
} |
||||
return (int) (sum >> 16 - (FIXED_POINT / 2)); |
||||
} |
||||
|
||||
/** |
||||
* Returns the absolute value. |
||||
*/ |
||||
public static int abs(int n) { |
||||
return (n < 0) ? -n : n; |
||||
} |
||||
|
||||
/** |
||||
* Returns the sign of a value, -1 for negative numbers, otherwise 1. |
||||
*/ |
||||
public static int sgn(int n) { |
||||
return (n < 0) ? -1 : 1; |
||||
} |
||||
|
||||
/** |
||||
* Returns the minimum of two values. |
||||
*/ |
||||
public static int min(int a, int b) { |
||||
return (a < b) ? a : b; |
||||
} |
||||
|
||||
/** |
||||
* Returns the maximum of two values. |
||||
*/ |
||||
public static int max(int a, int b) { |
||||
return (a > b) ? a : b; |
||||
} |
||||
|
||||
/** |
||||
* Clamps the value n between min and max. |
||||
*/ |
||||
public static int clamp(int n, int min, int max) { |
||||
return (n < min) ? min : (n > max) ? max : n; |
||||
} |
||||
|
||||
/** |
||||
* Wraps the value n between 0 and the required limit. |
||||
*/ |
||||
public static int wrap(int n, int limit) { |
||||
return ((n %= limit) < 0) ? limit + n : n; |
||||
} |
||||
|
||||
/** |
||||
* Returns the nearest int to a fixed point value. Equivalent to <code> |
||||
* Math.round()</code> in the standard library. |
||||
*/ |
||||
public static int round(int n) { |
||||
return n + HALF >> FIXED_POINT; |
||||
} |
||||
|
||||
/** |
||||
* Returns the nearest int rounded down from a fixed point value. |
||||
* Equivalent to <code>Math.floor()</code> in the standard library. |
||||
*/ |
||||
public static int floor(int n) { |
||||
return n >> FIXED_POINT; |
||||
} |
||||
|
||||
/** |
||||
* Returns the nearest int rounded up from a fixed point value. |
||||
* Equivalent to <code>Math.ceil()</code> in the standard library. |
||||
*/ |
||||
public static int ceil(int n) { |
||||
return n + (ONE - 1) >> FIXED_POINT; |
||||
} |
||||
|
||||
/** |
||||
* Returns a fixed point value greater than or equal to decimal 0.0 and |
||||
* less than 1.0 (in 16.16 format this would be 0 to 65535 inclusive). |
||||
*/ |
||||
public static int rand() { |
||||
if (rng == null) { |
||||
rng = new Random(); |
||||
} |
||||
return rng.nextInt() >>> (32 - FIXED_POINT); |
||||
} |
||||
|
||||
/** |
||||
* Returns a random number between 0 and <code>n</code> (exclusive). |
||||
*/ |
||||
public static int rand(int n) { |
||||
return (rand() * n) >> FIXED_POINT; |
||||
} |
||||
} |
Loading…
Reference in new issue