* Remove some useless files

git-svn-id: https://jmonkeyengine.googlecode.com/svn/trunk@9297 75d07b2b-3a1a-0410-a2c5-0572b91ccdca
3.0
Sha..rd 13 years ago
parent 2966b6a7b0
commit cf9d5b5ebc
  1. 359
      engine/src/android/com/jme3/util/FastInteger.java
  2. 431
      engine/src/android/jme3tools/android/Fixed.java

@ -1,359 +0,0 @@
package com.jme3.util;
/**
* The wrapper for the primitive type {@code int}.
* <p>
* As with the specification, this implementation relies on code laid out in <a
* href="http://www.hackersdelight.org/">Henry S. Warren, Jr.'s Hacker's
* Delight, (Addison Wesley, 2002)</a> as well as <a
* href="http://aggregate.org/MAGIC/">The Aggregate's Magic Algorithms</a>.
*
* @see java.lang.Number
* @since 1.1
*/
public final class FastInteger {
/**
* Constant for the maximum {@code int} value, 2<sup>31</sup>-1.
*/
public static final int MAX_VALUE = 0x7FFFFFFF;
/**
* Constant for the minimum {@code int} value, -2<sup>31</sup>.
*/
public static final int MIN_VALUE = 0x80000000;
/**
* Constant for the number of bits needed to represent an {@code int} in
* two's complement form.
*
* @since 1.5
*/
public static final int SIZE = 32;
/*
* Progressively smaller decimal order of magnitude that can be represented
* by an instance of Integer. Used to help compute the String
* representation.
*/
private static final int[] decimalScale = new int[] { 1000000000, 100000000,
10000000, 1000000, 100000, 10000, 1000, 100, 10, 1 };
/**
* Converts the specified integer into its decimal string representation.
* The returned string is a concatenation of a minus sign if the number is
* negative and characters from '0' to '9'.
*
* @param value
* the integer to convert.
* @return the decimal string representation of {@code value}.
*/
public static boolean toCharArray(int value, char[] output) {
if (value == 0)
{
output[0] = '0';
output[1] = 0;
return true;
}
// Faster algorithm for smaller Integers
if (value < 1000 && value > -1000) {
int positive_value = value < 0 ? -value : value;
int first_digit = 0;
if (value < 0) {
output[0] = '-';
first_digit++;
}
int last_digit = first_digit;
int quot = positive_value;
do {
int res = quot / 10;
int digit_value = quot - ((res << 3) + (res << 1));
digit_value += '0';
output[last_digit++] = (char) digit_value;
quot = res;
} while (quot != 0);
int count = last_digit--;
do {
char tmp = output[last_digit];
output[last_digit--] = output[first_digit];
output[first_digit++] = tmp;
} while (first_digit < last_digit);
output[count] = 0;
return true;
}
if (value == MIN_VALUE) {
System.arraycopy("-2147483648".toCharArray(), 0, output, 0, 12);
output[12] = 0;
return true;
}
int positive_value = value < 0 ? -value : value;
byte first_digit = 0;
if (value < 0) {
output[0] = '-';
first_digit++;
}
byte last_digit = first_digit;
byte count;
int number;
boolean start = false;
for (int i = 0; i < 9; i++) {
count = 0;
if (positive_value < (number = decimalScale[i])) {
if (start) {
output[last_digit++] = '0';
}
continue;
}
if (i > 0) {
number = (decimalScale[i] << 3);
if (positive_value >= number) {
positive_value -= number;
count += 8;
}
number = (decimalScale[i] << 2);
if (positive_value >= number) {
positive_value -= number;
count += 4;
}
}
number = (decimalScale[i] << 1);
if (positive_value >= number) {
positive_value -= number;
count += 2;
}
if (positive_value >= decimalScale[i]) {
positive_value -= decimalScale[i];
count++;
}
if (count > 0 && !start) {
start = true;
}
if (start) {
output[last_digit++] = (char) (count + '0');
}
}
output[last_digit++] = (char) (positive_value + '0');
output[last_digit] = 0;
count = last_digit--;
return true;
}
/**
* Determines the highest (leftmost) bit of the specified integer that is 1
* and returns the bit mask value for that bit. This is also referred to as
* the Most Significant 1 Bit. Returns zero if the specified integer is
* zero.
*
* @param i
* the integer to examine.
* @return the bit mask indicating the highest 1 bit in {@code i}.
* @since 1.5
*/
public static int highestOneBit(int i) {
i |= (i >> 1);
i |= (i >> 2);
i |= (i >> 4);
i |= (i >> 8);
i |= (i >> 16);
return (i & ~(i >>> 1));
}
/**
* Determines the lowest (rightmost) bit of the specified integer that is 1
* and returns the bit mask value for that bit. This is also referred
* to as the Least Significant 1 Bit. Returns zero if the specified integer
* is zero.
*
* @param i
* the integer to examine.
* @return the bit mask indicating the lowest 1 bit in {@code i}.
* @since 1.5
*/
public static int lowestOneBit(int i) {
return (i & (-i));
}
/**
* Determines the number of leading zeros in the specified integer prior to
* the {@link #highestOneBit(int) highest one bit}.
*
* @param i
* the integer to examine.
* @return the number of leading zeros in {@code i}.
* @since 1.5
*/
public static int numberOfLeadingZeros(int i) {
i |= i >> 1;
i |= i >> 2;
i |= i >> 4;
i |= i >> 8;
i |= i >> 16;
return bitCount(~i);
}
/**
* Determines the number of trailing zeros in the specified integer after
* the {@link #lowestOneBit(int) lowest one bit}.
*
* @param i
* the integer to examine.
* @return the number of trailing zeros in {@code i}.
* @since 1.5
*/
public static int numberOfTrailingZeros(int i) {
return bitCount((i & -i) - 1);
}
/**
* Counts the number of 1 bits in the specified integer; this is also
* referred to as population count.
*
* @param i
* the integer to examine.
* @return the number of 1 bits in {@code i}.
* @since 1.5
*/
public static int bitCount(int i) {
i -= ((i >> 1) & 0x55555555);
i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
i = (((i >> 4) + i) & 0x0F0F0F0F);
i += (i >> 8);
i += (i >> 16);
return (i & 0x0000003F);
}
/**
* Rotates the bits of the specified integer to the left by the specified
* number of bits.
*
* @param i
* the integer value to rotate left.
* @param distance
* the number of bits to rotate.
* @return the rotated value.
* @since 1.5
*/
public static int rotateLeft(int i, int distance) {
if (distance == 0) {
return i;
}
/*
* According to JLS3, 15.19, the right operand of a shift is always
* implicitly masked with 0x1F, which the negation of 'distance' is
* taking advantage of.
*/
return ((i << distance) | (i >>> (-distance)));
}
/**
* Rotates the bits of the specified integer to the right by the specified
* number of bits.
*
* @param i
* the integer value to rotate right.
* @param distance
* the number of bits to rotate.
* @return the rotated value.
* @since 1.5
*/
public static int rotateRight(int i, int distance) {
if (distance == 0) {
return i;
}
/*
* According to JLS3, 15.19, the right operand of a shift is always
* implicitly masked with 0x1F, which the negation of 'distance' is
* taking advantage of.
*/
return ((i >>> distance) | (i << (-distance)));
}
/**
* Reverses the order of the bytes of the specified integer.
*
* @param i
* the integer value for which to reverse the byte order.
* @return the reversed value.
* @since 1.5
*/
public static int reverseBytes(int i) {
int b3 = i >>> 24;
int b2 = (i >>> 8) & 0xFF00;
int b1 = (i & 0xFF00) << 8;
int b0 = i << 24;
return (b0 | b1 | b2 | b3);
}
/**
* Reverses the order of the bits of the specified integer.
*
* @param i
* the integer value for which to reverse the bit order.
* @return the reversed value.
* @since 1.5
*/
public static int reverse(int i) {
// From Hacker's Delight, 7-1, Figure 7-1
i = (i & 0x55555555) << 1 | (i >> 1) & 0x55555555;
i = (i & 0x33333333) << 2 | (i >> 2) & 0x33333333;
i = (i & 0x0F0F0F0F) << 4 | (i >> 4) & 0x0F0F0F0F;
return reverseBytes(i);
}
/**
* Returns the value of the {@code signum} function for the specified
* integer.
*
* @param i
* the integer value to check.
* @return -1 if {@code i} is negative, 1 if {@code i} is positive, 0 if
* {@code i} is zero.
* @since 1.5
*/
public static int signum(int i) {
return (i == 0 ? 0 : (i < 0 ? -1 : 1));
}
/**
* Returns a {@code Integer} instance for the specified integer value.
* <p>
* If it is not necessary to get a new {@code Integer} instance, it is
* recommended to use this method instead of the constructor, since it
* maintains a cache of instances which may result in better performance.
*
* @param i
* the integer value to store in the instance.
* @return a {@code Integer} instance containing {@code i}.
* @since 1.5
*/
public static Integer valueOf(int i) {
if (i < -128 || i > 127) {
return new Integer(i);
}
return valueOfCache.CACHE [i+128];
}
static class valueOfCache {
/**
* <p>
* A cache of instances used by {@link Integer#valueOf(int)} and auto-boxing.
*/
static final Integer[] CACHE = new Integer[256];
static {
for(int i=-128; i<=127; i++) {
CACHE[i+128] = new Integer(i);
}
}
}
}

@ -1,431 +0,0 @@
package jme3tools.android;
import java.util.Random;
/**
* Fixed point maths class. This can be tailored for specific needs by
* changing the bits allocated to the 'fraction' part (see <code>FIXED_POINT
* </code>, which would also require <code>SIN_PRECALC</code> and <code>
* COS_PRECALC</code> updating).
*
* <p><a href="http://blog.numfum.com/2007/09/java-fixed-point-maths.html">
* http://blog.numfum.com/2007/09/java-fixed-point-maths.html</a></p>
*
* @version 1.0
* @author CW
*
* @deprecated Most devices with OpenGL ES 2.0 have an FPU. Please use
* floats instead of this class for decimal math.
*/
@Deprecated
public final class Fixed {
/**
* Number of bits used for 'fraction'.
*/
public static final int FIXED_POINT = 16;
/**
* Decimal one as represented by the Fixed class.
*/
public static final int ONE = 1 << FIXED_POINT;
/**
* Half in fixed point.
*/
public static final int HALF = ONE >> 1;
/**
* Quarter circle resolution for trig functions (should be a power of
* two). This is the number of discrete steps in 90 degrees.
*/
public static final int QUARTER_CIRCLE = 64;
/**
* Mask used to limit angles to one revolution. If a quarter circle is 64
* (i.e. 90 degrees is broken into 64 steps) then the mask is 255.
*/
public static final int FULL_CIRCLE_MASK = QUARTER_CIRCLE * 4 - 1;
/**
* The trig table is generated at a higher precision than the typical
* 16.16 format used for the rest of the fixed point maths. The table
* values are then shifted to match the actual fixed point used.
*/
private static final int TABLE_SHIFT = 30;
/**
* Equivalent to: sin((2 * PI) / (QUARTER_CIRCLE * 4))
* <p>
* Note: if either QUARTER_CIRCLE or TABLE_SHIFT is changed this value
* will need recalculating (put the above formular into a calculator set
* radians, then shift the result by <code>TABLE_SHIFT</code>).
*/
private static final int SIN_PRECALC = 26350943;
/**
* Equivalent to: cos((2 * PI) / (QUARTER_CIRCLE * 4)) * 2
*
* Note: if either QUARTER_CIRCLE or TABLE_SHIFT is changed this value
* will need recalculating ((put the above formular into a calculator set
* radians, then shift the result by <code>TABLE_SHIFT</code>).
*/
private static final int COS_PRECALC = 2146836866;
/**
* One quarter sine wave as fixed point values.
*/
private static final int[] SINE_TABLE = new int[QUARTER_CIRCLE + 1];
/**
* Scale value for indexing ATAN_TABLE[].
*/
private static final int ATAN_SHIFT;
/**
* Reverse atan lookup table.
*/
private static final byte[] ATAN_TABLE;
/**
* ATAN_TABLE.length
*/
private static final int ATAN_TABLE_LEN;
/*
* Generates the tables and fills in any remaining static ints.
*/
static {
// Generate the sine table using recursive synthesis.
SINE_TABLE[0] = 0;
SINE_TABLE[1] = SIN_PRECALC;
for (int n = 2; n < QUARTER_CIRCLE + 1; n++) {
SINE_TABLE[n] = (int) (((long) SINE_TABLE[n - 1] * COS_PRECALC) >> TABLE_SHIFT) - SINE_TABLE[n - 2];
}
// Scale the values to the fixed point format used.
for (int n = 0; n < QUARTER_CIRCLE + 1; n++) {
SINE_TABLE[n] = SINE_TABLE[n] + (1 << (TABLE_SHIFT - FIXED_POINT - 1)) >> TABLE_SHIFT - FIXED_POINT;
}
// Calculate a shift used to scale atan lookups
int rotl = 0;
int tan0 = tan(0);
int tan1 = tan(1);
while (rotl < 32) {
if ((tan1 >>= 1) > (tan0 >>= 1)) {
rotl++;
} else {
break;
}
}
ATAN_SHIFT = rotl;
// Create the a table of tan values
int[] lut = new int[QUARTER_CIRCLE];
for (int n = 0; n < QUARTER_CIRCLE; n++) {
lut[n] = tan(n) >> rotl;
}
ATAN_TABLE_LEN = lut[QUARTER_CIRCLE - 1];
// Then from the tan values create a reverse lookup
ATAN_TABLE = new byte[ATAN_TABLE_LEN];
for (byte n = 0; n < QUARTER_CIRCLE - 1; n++) {
int min = lut[n];
int max = lut[n + 1];
for (int i = min; i < max; i++) {
ATAN_TABLE[i] = n;
}
}
}
/**
* How many decimal places to use when converting a fixed point value to
* a decimal string.
*
* @see #toString
*/
private static final int STRING_DECIMAL_PLACES = 2;
/**
* Value to add in order to round down a fixed point number when
* converting to a string.
*/
private static final int STRING_DECIMAL_PLACES_ROUND;
static {
int i = 10;
for (int n = 1; n < STRING_DECIMAL_PLACES; n++) {
i *= i;
}
if (STRING_DECIMAL_PLACES == 0) {
STRING_DECIMAL_PLACES_ROUND = ONE / 2;
} else {
STRING_DECIMAL_PLACES_ROUND = ONE / (2 * i);
}
}
/**
* Random number generator. The standard <code>java.utll.Random</code> is
* used since it is available to both J2ME and J2SE. If a guaranteed
* sequence is required this would not be adequate.
*/
private static Random rng = null;
/**
* Fixed can't be instantiated.
*/
private Fixed() {
}
/**
* Returns an integer as a fixed point value.
*/
public static int intToFixed(int n) {
return n << FIXED_POINT;
}
/**
* Returns a fixed point value as a float.
*/
public static float fixedToFloat(int i) {
float fp = i;
fp = fp / ((float) ONE);
return fp;
}
/**
* Returns a float as a fixed point value.
*/
public static int floatToFixed(float fp) {
return (int) (fp * ((float) ONE));
}
/**
* Converts a fixed point value into a decimal string.
*/
public static String toString(int n) {
StringBuffer sb = new StringBuffer(16);
sb.append((n += STRING_DECIMAL_PLACES_ROUND) >> FIXED_POINT);
sb.append('.');
n &= ONE - 1;
for (int i = 0; i < STRING_DECIMAL_PLACES; i++) {
n *= 10;
sb.append((n / ONE) % 10);
}
return sb.toString();
}
/**
* Multiplies two fixed point values and returns the result.
*/
public static int mul(int a, int b) {
return (int) ((long) a * (long) b >> FIXED_POINT);
}
/**
* Divides two fixed point values and returns the result.
*/
public static int div(int a, int b) {
return (int) (((long) a << FIXED_POINT * 2) / (long) b >> FIXED_POINT);
}
/**
* Sine of an angle.
*
* @see #QUARTER_CIRCLE
*/
public static int sin(int n) {
n &= FULL_CIRCLE_MASK;
if (n < QUARTER_CIRCLE * 2) {
if (n < QUARTER_CIRCLE) {
return SINE_TABLE[n];
} else {
return SINE_TABLE[QUARTER_CIRCLE * 2 - n];
}
} else {
if (n < QUARTER_CIRCLE * 3) {
return -SINE_TABLE[n - QUARTER_CIRCLE * 2];
} else {
return -SINE_TABLE[QUARTER_CIRCLE * 4 - n];
}
}
}
/**
* Cosine of an angle.
*
* @see #QUARTER_CIRCLE
*/
public static int cos(int n) {
n &= FULL_CIRCLE_MASK;
if (n < QUARTER_CIRCLE * 2) {
if (n < QUARTER_CIRCLE) {
return SINE_TABLE[QUARTER_CIRCLE - n];
} else {
return -SINE_TABLE[n - QUARTER_CIRCLE];
}
} else {
if (n < QUARTER_CIRCLE * 3) {
return -SINE_TABLE[QUARTER_CIRCLE * 3 - n];
} else {
return SINE_TABLE[n - QUARTER_CIRCLE * 3];
}
}
}
/**
* Tangent of an angle.
*
* @see #QUARTER_CIRCLE
*/
public static int tan(int n) {
return div(sin(n), cos(n));
}
/**
* Returns the arc tangent of an angle.
*/
public static int atan(int n) {
n = n + (1 << (ATAN_SHIFT - 1)) >> ATAN_SHIFT;
if (n < 0) {
if (n <= -ATAN_TABLE_LEN) {
return -(QUARTER_CIRCLE - 1);
}
return -ATAN_TABLE[-n];
} else {
if (n >= ATAN_TABLE_LEN) {
return QUARTER_CIRCLE - 1;
}
return ATAN_TABLE[n];
}
}
/**
* Returns the polar angle of a rectangular coordinate.
*/
public static int atan(int x, int y) {
int n = atan(div(x, abs(y) + 1)); // kludge to prevent ArithmeticException
if (y > 0) {
return n;
}
if (y < 0) {
if (x < 0) {
return -QUARTER_CIRCLE * 2 - n;
}
if (x > 0) {
return QUARTER_CIRCLE * 2 - n;
}
return QUARTER_CIRCLE * 2;
}
if (x > 0) {
return QUARTER_CIRCLE;
}
return -QUARTER_CIRCLE;
}
/**
* Rough calculation of the hypotenuse. Whilst not accurate it is very fast.
* <p>
* Derived from a piece in Graphics Gems.
*/
public static int hyp(int x1, int y1, int x2, int y2) {
if ((x2 -= x1) < 0) {
x2 = -x2;
}
if ((y2 -= y1) < 0) {
y2 = -y2;
}
return x2 + y2 - (((x2 > y2) ? y2 : x2) >> 1);
}
/**
* Fixed point square root.
* <p>
* Derived from a 1993 Usenet algorithm posted by Christophe Meessen.
*/
public static int sqrt(int n) {
if (n <= 0) {
return 0;
}
long sum = 0;
int bit = 0x40000000;
while (bit >= 0x100) { // lower values give more accurate results
long tmp = sum | bit;
if (n >= tmp) {
n -= tmp;
sum = tmp + bit;
}
bit >>= 1;
n <<= 1;
}
return (int) (sum >> 16 - (FIXED_POINT / 2));
}
/**
* Returns the absolute value.
*/
public static int abs(int n) {
return (n < 0) ? -n : n;
}
/**
* Returns the sign of a value, -1 for negative numbers, otherwise 1.
*/
public static int sgn(int n) {
return (n < 0) ? -1 : 1;
}
/**
* Returns the minimum of two values.
*/
public static int min(int a, int b) {
return (a < b) ? a : b;
}
/**
* Returns the maximum of two values.
*/
public static int max(int a, int b) {
return (a > b) ? a : b;
}
/**
* Clamps the value n between min and max.
*/
public static int clamp(int n, int min, int max) {
return (n < min) ? min : (n > max) ? max : n;
}
/**
* Wraps the value n between 0 and the required limit.
*/
public static int wrap(int n, int limit) {
return ((n %= limit) < 0) ? limit + n : n;
}
/**
* Returns the nearest int to a fixed point value. Equivalent to <code>
* Math.round()</code> in the standard library.
*/
public static int round(int n) {
return n + HALF >> FIXED_POINT;
}
/**
* Returns the nearest int rounded down from a fixed point value.
* Equivalent to <code>Math.floor()</code> in the standard library.
*/
public static int floor(int n) {
return n >> FIXED_POINT;
}
/**
* Returns the nearest int rounded up from a fixed point value.
* Equivalent to <code>Math.ceil()</code> in the standard library.
*/
public static int ceil(int n) {
return n + (ONE - 1) >> FIXED_POINT;
}
/**
* Returns a fixed point value greater than or equal to decimal 0.0 and
* less than 1.0 (in 16.16 format this would be 0 to 65535 inclusive).
*/
public static int rand() {
if (rng == null) {
rng = new Random();
}
return rng.nextInt() >>> (32 - FIXED_POINT);
}
/**
* Returns a random number between 0 and <code>n</code> (exclusive).
*/
public static int rand(int n) {
return (rand() * n) >> FIXED_POINT;
}
}
Loading…
Cancel
Save