diff --git a/engine/src/android/com/jme3/util/FastInteger.java b/engine/src/android/com/jme3/util/FastInteger.java deleted file mode 100644 index 49294b4a9..000000000 --- a/engine/src/android/com/jme3/util/FastInteger.java +++ /dev/null @@ -1,359 +0,0 @@ -package com.jme3.util; - - -/** - * The wrapper for the primitive type {@code int}. - *
- * As with the specification, this implementation relies on code laid out in Henry S. Warren, Jr.'s Hacker's - * Delight, (Addison Wesley, 2002) as well as The Aggregate's Magic Algorithms. - * - * @see java.lang.Number - * @since 1.1 - */ -public final class FastInteger { - - /** - * Constant for the maximum {@code int} value, 231-1. - */ - public static final int MAX_VALUE = 0x7FFFFFFF; - - /** - * Constant for the minimum {@code int} value, -231. - */ - public static final int MIN_VALUE = 0x80000000; - - /** - * Constant for the number of bits needed to represent an {@code int} in - * two's complement form. - * - * @since 1.5 - */ - public static final int SIZE = 32; - - /* - * Progressively smaller decimal order of magnitude that can be represented - * by an instance of Integer. Used to help compute the String - * representation. - */ - private static final int[] decimalScale = new int[] { 1000000000, 100000000, - 10000000, 1000000, 100000, 10000, 1000, 100, 10, 1 }; - - /** - * Converts the specified integer into its decimal string representation. - * The returned string is a concatenation of a minus sign if the number is - * negative and characters from '0' to '9'. - * - * @param value - * the integer to convert. - * @return the decimal string representation of {@code value}. - */ - public static boolean toCharArray(int value, char[] output) { - if (value == 0) - { - output[0] = '0'; - output[1] = 0; - return true; - } - - // Faster algorithm for smaller Integers - if (value < 1000 && value > -1000) { - - int positive_value = value < 0 ? -value : value; - int first_digit = 0; - if (value < 0) { - output[0] = '-'; - first_digit++; - } - int last_digit = first_digit; - int quot = positive_value; - do { - int res = quot / 10; - int digit_value = quot - ((res << 3) + (res << 1)); - digit_value += '0'; - output[last_digit++] = (char) digit_value; - quot = res; - } while (quot != 0); - - int count = last_digit--; - do { - char tmp = output[last_digit]; - output[last_digit--] = output[first_digit]; - output[first_digit++] = tmp; - } while (first_digit < last_digit); - output[count] = 0; - return true; - } - if (value == MIN_VALUE) { - System.arraycopy("-2147483648".toCharArray(), 0, output, 0, 12); - output[12] = 0; - return true; - } - - - int positive_value = value < 0 ? -value : value; - byte first_digit = 0; - if (value < 0) { - output[0] = '-'; - first_digit++; - } - byte last_digit = first_digit; - byte count; - int number; - boolean start = false; - for (int i = 0; i < 9; i++) { - count = 0; - if (positive_value < (number = decimalScale[i])) { - if (start) { - output[last_digit++] = '0'; - } - continue; - } - - if (i > 0) { - number = (decimalScale[i] << 3); - if (positive_value >= number) { - positive_value -= number; - count += 8; - } - number = (decimalScale[i] << 2); - if (positive_value >= number) { - positive_value -= number; - count += 4; - } - } - number = (decimalScale[i] << 1); - if (positive_value >= number) { - positive_value -= number; - count += 2; - } - if (positive_value >= decimalScale[i]) { - positive_value -= decimalScale[i]; - count++; - } - if (count > 0 && !start) { - start = true; - } - if (start) { - output[last_digit++] = (char) (count + '0'); - } - } - - output[last_digit++] = (char) (positive_value + '0'); - output[last_digit] = 0; - count = last_digit--; - return true; - } - - - /** - * Determines the highest (leftmost) bit of the specified integer that is 1 - * and returns the bit mask value for that bit. This is also referred to as - * the Most Significant 1 Bit. Returns zero if the specified integer is - * zero. - * - * @param i - * the integer to examine. - * @return the bit mask indicating the highest 1 bit in {@code i}. - * @since 1.5 - */ - public static int highestOneBit(int i) { - i |= (i >> 1); - i |= (i >> 2); - i |= (i >> 4); - i |= (i >> 8); - i |= (i >> 16); - return (i & ~(i >>> 1)); - } - - /** - * Determines the lowest (rightmost) bit of the specified integer that is 1 - * and returns the bit mask value for that bit. This is also referred - * to as the Least Significant 1 Bit. Returns zero if the specified integer - * is zero. - * - * @param i - * the integer to examine. - * @return the bit mask indicating the lowest 1 bit in {@code i}. - * @since 1.5 - */ - public static int lowestOneBit(int i) { - return (i & (-i)); - } - - /** - * Determines the number of leading zeros in the specified integer prior to - * the {@link #highestOneBit(int) highest one bit}. - * - * @param i - * the integer to examine. - * @return the number of leading zeros in {@code i}. - * @since 1.5 - */ - public static int numberOfLeadingZeros(int i) { - i |= i >> 1; - i |= i >> 2; - i |= i >> 4; - i |= i >> 8; - i |= i >> 16; - return bitCount(~i); - } - - /** - * Determines the number of trailing zeros in the specified integer after - * the {@link #lowestOneBit(int) lowest one bit}. - * - * @param i - * the integer to examine. - * @return the number of trailing zeros in {@code i}. - * @since 1.5 - */ - public static int numberOfTrailingZeros(int i) { - return bitCount((i & -i) - 1); - } - - /** - * Counts the number of 1 bits in the specified integer; this is also - * referred to as population count. - * - * @param i - * the integer to examine. - * @return the number of 1 bits in {@code i}. - * @since 1.5 - */ - public static int bitCount(int i) { - i -= ((i >> 1) & 0x55555555); - i = (i & 0x33333333) + ((i >> 2) & 0x33333333); - i = (((i >> 4) + i) & 0x0F0F0F0F); - i += (i >> 8); - i += (i >> 16); - return (i & 0x0000003F); - } - - /** - * Rotates the bits of the specified integer to the left by the specified - * number of bits. - * - * @param i - * the integer value to rotate left. - * @param distance - * the number of bits to rotate. - * @return the rotated value. - * @since 1.5 - */ - public static int rotateLeft(int i, int distance) { - if (distance == 0) { - return i; - } - /* - * According to JLS3, 15.19, the right operand of a shift is always - * implicitly masked with 0x1F, which the negation of 'distance' is - * taking advantage of. - */ - return ((i << distance) | (i >>> (-distance))); - } - - /** - * Rotates the bits of the specified integer to the right by the specified - * number of bits. - * - * @param i - * the integer value to rotate right. - * @param distance - * the number of bits to rotate. - * @return the rotated value. - * @since 1.5 - */ - public static int rotateRight(int i, int distance) { - if (distance == 0) { - return i; - } - /* - * According to JLS3, 15.19, the right operand of a shift is always - * implicitly masked with 0x1F, which the negation of 'distance' is - * taking advantage of. - */ - return ((i >>> distance) | (i << (-distance))); - } - - /** - * Reverses the order of the bytes of the specified integer. - * - * @param i - * the integer value for which to reverse the byte order. - * @return the reversed value. - * @since 1.5 - */ - public static int reverseBytes(int i) { - int b3 = i >>> 24; - int b2 = (i >>> 8) & 0xFF00; - int b1 = (i & 0xFF00) << 8; - int b0 = i << 24; - return (b0 | b1 | b2 | b3); - } - - /** - * Reverses the order of the bits of the specified integer. - * - * @param i - * the integer value for which to reverse the bit order. - * @return the reversed value. - * @since 1.5 - */ - public static int reverse(int i) { - // From Hacker's Delight, 7-1, Figure 7-1 - i = (i & 0x55555555) << 1 | (i >> 1) & 0x55555555; - i = (i & 0x33333333) << 2 | (i >> 2) & 0x33333333; - i = (i & 0x0F0F0F0F) << 4 | (i >> 4) & 0x0F0F0F0F; - return reverseBytes(i); - } - - /** - * Returns the value of the {@code signum} function for the specified - * integer. - * - * @param i - * the integer value to check. - * @return -1 if {@code i} is negative, 1 if {@code i} is positive, 0 if - * {@code i} is zero. - * @since 1.5 - */ - public static int signum(int i) { - return (i == 0 ? 0 : (i < 0 ? -1 : 1)); - } - - /** - * Returns a {@code Integer} instance for the specified integer value. - *
- * If it is not necessary to get a new {@code Integer} instance, it is - * recommended to use this method instead of the constructor, since it - * maintains a cache of instances which may result in better performance. - * - * @param i - * the integer value to store in the instance. - * @return a {@code Integer} instance containing {@code i}. - * @since 1.5 - */ - public static Integer valueOf(int i) { - if (i < -128 || i > 127) { - return new Integer(i); - } - return valueOfCache.CACHE [i+128]; - - } - - static class valueOfCache { - /** - *
- * A cache of instances used by {@link Integer#valueOf(int)} and auto-boxing.
- */
- static final Integer[] CACHE = new Integer[256];
-
- static {
- for(int i=-128; i<=127; i++) {
- CACHE[i+128] = new Integer(i);
- }
- }
- }
-}
diff --git a/engine/src/android/jme3tools/android/Fixed.java b/engine/src/android/jme3tools/android/Fixed.java
deleted file mode 100644
index 4420999e9..000000000
--- a/engine/src/android/jme3tools/android/Fixed.java
+++ /dev/null
@@ -1,431 +0,0 @@
-package jme3tools.android;
-
-import java.util.Random;
-
-/**
- * Fixed point maths class. This can be tailored for specific needs by
- * changing the bits allocated to the 'fraction' part (see FIXED_POINT
- *
, which would also require SIN_PRECALC
and
- * COS_PRECALC
updating).
- *
- *
- * http://blog.numfum.com/2007/09/java-fixed-point-maths.html
- * - * @version 1.0 - * @author CW - * - * @deprecated Most devices with OpenGL ES 2.0 have an FPU. Please use - * floats instead of this class for decimal math. - */ -@Deprecated -public final class Fixed { - - /** - * Number of bits used for 'fraction'. - */ - public static final int FIXED_POINT = 16; - /** - * Decimal one as represented by the Fixed class. - */ - public static final int ONE = 1 << FIXED_POINT; - /** - * Half in fixed point. - */ - public static final int HALF = ONE >> 1; - /** - * Quarter circle resolution for trig functions (should be a power of - * two). This is the number of discrete steps in 90 degrees. - */ - public static final int QUARTER_CIRCLE = 64; - /** - * Mask used to limit angles to one revolution. If a quarter circle is 64 - * (i.e. 90 degrees is broken into 64 steps) then the mask is 255. - */ - public static final int FULL_CIRCLE_MASK = QUARTER_CIRCLE * 4 - 1; - /** - * The trig table is generated at a higher precision than the typical - * 16.16 format used for the rest of the fixed point maths. The table - * values are then shifted to match the actual fixed point used. - */ - private static final int TABLE_SHIFT = 30; - /** - * Equivalent to: sin((2 * PI) / (QUARTER_CIRCLE * 4)) - *
- * Note: if either QUARTER_CIRCLE or TABLE_SHIFT is changed this value
- * will need recalculating (put the above formular into a calculator set
- * radians, then shift the result by TABLE_SHIFT
).
- */
- private static final int SIN_PRECALC = 26350943;
- /**
- * Equivalent to: cos((2 * PI) / (QUARTER_CIRCLE * 4)) * 2
- *
- * Note: if either QUARTER_CIRCLE or TABLE_SHIFT is changed this value
- * will need recalculating ((put the above formular into a calculator set
- * radians, then shift the result by TABLE_SHIFT
).
- */
- private static final int COS_PRECALC = 2146836866;
- /**
- * One quarter sine wave as fixed point values.
- */
- private static final int[] SINE_TABLE = new int[QUARTER_CIRCLE + 1];
- /**
- * Scale value for indexing ATAN_TABLE[].
- */
- private static final int ATAN_SHIFT;
- /**
- * Reverse atan lookup table.
- */
- private static final byte[] ATAN_TABLE;
- /**
- * ATAN_TABLE.length
- */
- private static final int ATAN_TABLE_LEN;
-
- /*
- * Generates the tables and fills in any remaining static ints.
- */
- static {
- // Generate the sine table using recursive synthesis.
- SINE_TABLE[0] = 0;
- SINE_TABLE[1] = SIN_PRECALC;
- for (int n = 2; n < QUARTER_CIRCLE + 1; n++) {
- SINE_TABLE[n] = (int) (((long) SINE_TABLE[n - 1] * COS_PRECALC) >> TABLE_SHIFT) - SINE_TABLE[n - 2];
- }
- // Scale the values to the fixed point format used.
- for (int n = 0; n < QUARTER_CIRCLE + 1; n++) {
- SINE_TABLE[n] = SINE_TABLE[n] + (1 << (TABLE_SHIFT - FIXED_POINT - 1)) >> TABLE_SHIFT - FIXED_POINT;
- }
-
- // Calculate a shift used to scale atan lookups
- int rotl = 0;
- int tan0 = tan(0);
- int tan1 = tan(1);
- while (rotl < 32) {
- if ((tan1 >>= 1) > (tan0 >>= 1)) {
- rotl++;
- } else {
- break;
- }
- }
- ATAN_SHIFT = rotl;
- // Create the a table of tan values
- int[] lut = new int[QUARTER_CIRCLE];
- for (int n = 0; n < QUARTER_CIRCLE; n++) {
- lut[n] = tan(n) >> rotl;
- }
- ATAN_TABLE_LEN = lut[QUARTER_CIRCLE - 1];
- // Then from the tan values create a reverse lookup
- ATAN_TABLE = new byte[ATAN_TABLE_LEN];
- for (byte n = 0; n < QUARTER_CIRCLE - 1; n++) {
- int min = lut[n];
- int max = lut[n + 1];
- for (int i = min; i < max; i++) {
- ATAN_TABLE[i] = n;
- }
- }
- }
- /**
- * How many decimal places to use when converting a fixed point value to
- * a decimal string.
- *
- * @see #toString
- */
- private static final int STRING_DECIMAL_PLACES = 2;
- /**
- * Value to add in order to round down a fixed point number when
- * converting to a string.
- */
- private static final int STRING_DECIMAL_PLACES_ROUND;
-
- static {
- int i = 10;
- for (int n = 1; n < STRING_DECIMAL_PLACES; n++) {
- i *= i;
- }
- if (STRING_DECIMAL_PLACES == 0) {
- STRING_DECIMAL_PLACES_ROUND = ONE / 2;
- } else {
- STRING_DECIMAL_PLACES_ROUND = ONE / (2 * i);
- }
- }
- /**
- * Random number generator. The standard java.utll.Random
is
- * used since it is available to both J2ME and J2SE. If a guaranteed
- * sequence is required this would not be adequate.
- */
- private static Random rng = null;
-
- /**
- * Fixed can't be instantiated.
- */
- private Fixed() {
- }
-
- /**
- * Returns an integer as a fixed point value.
- */
- public static int intToFixed(int n) {
- return n << FIXED_POINT;
- }
-
- /**
- * Returns a fixed point value as a float.
- */
- public static float fixedToFloat(int i) {
- float fp = i;
- fp = fp / ((float) ONE);
- return fp;
- }
-
- /**
- * Returns a float as a fixed point value.
- */
- public static int floatToFixed(float fp) {
- return (int) (fp * ((float) ONE));
- }
-
- /**
- * Converts a fixed point value into a decimal string.
- */
- public static String toString(int n) {
- StringBuffer sb = new StringBuffer(16);
- sb.append((n += STRING_DECIMAL_PLACES_ROUND) >> FIXED_POINT);
- sb.append('.');
- n &= ONE - 1;
- for (int i = 0; i < STRING_DECIMAL_PLACES; i++) {
- n *= 10;
- sb.append((n / ONE) % 10);
- }
- return sb.toString();
- }
-
- /**
- * Multiplies two fixed point values and returns the result.
- */
- public static int mul(int a, int b) {
- return (int) ((long) a * (long) b >> FIXED_POINT);
- }
-
- /**
- * Divides two fixed point values and returns the result.
- */
- public static int div(int a, int b) {
- return (int) (((long) a << FIXED_POINT * 2) / (long) b >> FIXED_POINT);
- }
-
- /**
- * Sine of an angle.
- *
- * @see #QUARTER_CIRCLE
- */
- public static int sin(int n) {
- n &= FULL_CIRCLE_MASK;
- if (n < QUARTER_CIRCLE * 2) {
- if (n < QUARTER_CIRCLE) {
- return SINE_TABLE[n];
- } else {
- return SINE_TABLE[QUARTER_CIRCLE * 2 - n];
- }
- } else {
- if (n < QUARTER_CIRCLE * 3) {
- return -SINE_TABLE[n - QUARTER_CIRCLE * 2];
- } else {
- return -SINE_TABLE[QUARTER_CIRCLE * 4 - n];
- }
- }
- }
-
- /**
- * Cosine of an angle.
- *
- * @see #QUARTER_CIRCLE
- */
- public static int cos(int n) {
- n &= FULL_CIRCLE_MASK;
- if (n < QUARTER_CIRCLE * 2) {
- if (n < QUARTER_CIRCLE) {
- return SINE_TABLE[QUARTER_CIRCLE - n];
- } else {
- return -SINE_TABLE[n - QUARTER_CIRCLE];
- }
- } else {
- if (n < QUARTER_CIRCLE * 3) {
- return -SINE_TABLE[QUARTER_CIRCLE * 3 - n];
- } else {
- return SINE_TABLE[n - QUARTER_CIRCLE * 3];
- }
- }
- }
-
- /**
- * Tangent of an angle.
- *
- * @see #QUARTER_CIRCLE
- */
- public static int tan(int n) {
- return div(sin(n), cos(n));
- }
-
- /**
- * Returns the arc tangent of an angle.
- */
- public static int atan(int n) {
- n = n + (1 << (ATAN_SHIFT - 1)) >> ATAN_SHIFT;
- if (n < 0) {
- if (n <= -ATAN_TABLE_LEN) {
- return -(QUARTER_CIRCLE - 1);
- }
- return -ATAN_TABLE[-n];
- } else {
- if (n >= ATAN_TABLE_LEN) {
- return QUARTER_CIRCLE - 1;
- }
- return ATAN_TABLE[n];
- }
- }
-
- /**
- * Returns the polar angle of a rectangular coordinate.
- */
- public static int atan(int x, int y) {
- int n = atan(div(x, abs(y) + 1)); // kludge to prevent ArithmeticException
- if (y > 0) {
- return n;
- }
- if (y < 0) {
- if (x < 0) {
- return -QUARTER_CIRCLE * 2 - n;
- }
- if (x > 0) {
- return QUARTER_CIRCLE * 2 - n;
- }
- return QUARTER_CIRCLE * 2;
- }
- if (x > 0) {
- return QUARTER_CIRCLE;
- }
- return -QUARTER_CIRCLE;
- }
-
- /**
- * Rough calculation of the hypotenuse. Whilst not accurate it is very fast.
- *
- * Derived from a piece in Graphics Gems. - */ - public static int hyp(int x1, int y1, int x2, int y2) { - if ((x2 -= x1) < 0) { - x2 = -x2; - } - if ((y2 -= y1) < 0) { - y2 = -y2; - } - return x2 + y2 - (((x2 > y2) ? y2 : x2) >> 1); - } - - /** - * Fixed point square root. - *
- * Derived from a 1993 Usenet algorithm posted by Christophe Meessen.
- */
- public static int sqrt(int n) {
- if (n <= 0) {
- return 0;
- }
- long sum = 0;
- int bit = 0x40000000;
- while (bit >= 0x100) { // lower values give more accurate results
- long tmp = sum | bit;
- if (n >= tmp) {
- n -= tmp;
- sum = tmp + bit;
- }
- bit >>= 1;
- n <<= 1;
- }
- return (int) (sum >> 16 - (FIXED_POINT / 2));
- }
-
- /**
- * Returns the absolute value.
- */
- public static int abs(int n) {
- return (n < 0) ? -n : n;
- }
-
- /**
- * Returns the sign of a value, -1 for negative numbers, otherwise 1.
- */
- public static int sgn(int n) {
- return (n < 0) ? -1 : 1;
- }
-
- /**
- * Returns the minimum of two values.
- */
- public static int min(int a, int b) {
- return (a < b) ? a : b;
- }
-
- /**
- * Returns the maximum of two values.
- */
- public static int max(int a, int b) {
- return (a > b) ? a : b;
- }
-
- /**
- * Clamps the value n between min and max.
- */
- public static int clamp(int n, int min, int max) {
- return (n < min) ? min : (n > max) ? max : n;
- }
-
- /**
- * Wraps the value n between 0 and the required limit.
- */
- public static int wrap(int n, int limit) {
- return ((n %= limit) < 0) ? limit + n : n;
- }
-
- /**
- * Returns the nearest int to a fixed point value. Equivalent to
- * Math.round()
in the standard library.
- */
- public static int round(int n) {
- return n + HALF >> FIXED_POINT;
- }
-
- /**
- * Returns the nearest int rounded down from a fixed point value.
- * Equivalent to Math.floor()
in the standard library.
- */
- public static int floor(int n) {
- return n >> FIXED_POINT;
- }
-
- /**
- * Returns the nearest int rounded up from a fixed point value.
- * Equivalent to Math.ceil()
in the standard library.
- */
- public static int ceil(int n) {
- return n + (ONE - 1) >> FIXED_POINT;
- }
-
- /**
- * Returns a fixed point value greater than or equal to decimal 0.0 and
- * less than 1.0 (in 16.16 format this would be 0 to 65535 inclusive).
- */
- public static int rand() {
- if (rng == null) {
- rng = new Random();
- }
- return rng.nextInt() >>> (32 - FIXED_POINT);
- }
-
- /**
- * Returns a random number between 0 and n
(exclusive).
- */
- public static int rand(int n) {
- return (rand() * n) >> FIXED_POINT;
- }
-}
\ No newline at end of file