Merge remote-tracking branch 'upstream/master' into fix_fb_depth24stencil8

experimental
David Bernard 10 years ago
commit 4fdde38bc2
  1. BIN
      jme3-android-native/libs/openalsoft/arm64-v8a/libopenalsoftjme.so
  2. BIN
      jme3-android-native/libs/openalsoft/armeabi-v7a/libopenalsoftjme.so
  3. BIN
      jme3-android-native/libs/openalsoft/armeabi/libopenalsoftjme.so
  4. BIN
      jme3-android-native/libs/openalsoft/mips/libopenalsoftjme.so
  5. BIN
      jme3-android-native/libs/openalsoft/mips64/libopenalsoftjme.so
  6. BIN
      jme3-android-native/libs/openalsoft/x86/libopenalsoftjme.so
  7. BIN
      jme3-android-native/libs/openalsoft/x86_64/libopenalsoftjme.so
  8. BIN
      jme3-android-native/libs/stb_image/arm64-v8a/libstbijme.so
  9. BIN
      jme3-android-native/libs/stb_image/armeabi-v7a/libstbijme.so
  10. BIN
      jme3-android-native/libs/stb_image/armeabi/libstbijme.so
  11. BIN
      jme3-android-native/libs/stb_image/mips/libstbijme.so
  12. BIN
      jme3-android-native/libs/stb_image/mips64/libstbijme.so
  13. BIN
      jme3-android-native/libs/stb_image/x86/libstbijme.so
  14. BIN
      jme3-android-native/libs/stb_image/x86_64/libstbijme.so
  15. 23
      jme3-android-native/openalsoft.gradle
  16. 108
      jme3-android-native/src/native/jme_openalsoft/Android.mk
  17. 2
      jme3-android-native/src/native/jme_openalsoft/Application.mk
  18. 206
      jme3-android-native/src/native/jme_openalsoft/config.h
  19. 14
      jme3-android-native/src/native/jme_stbi/Android.mk
  20. 2
      jme3-android-native/src/native/jme_stbi/Application.mk
  21. 5
      jme3-android-native/src/native/jme_stbi/com_jme3_texture_plugins_AndroidNativeImageLoader.c
  22. 23
      jme3-android-native/stb_image.gradle
  23. 4
      jme3-android/src/main/java/com/jme3/app/AndroidHarness.java
  24. 6
      jme3-android/src/main/java/com/jme3/input/android/AndroidInputHandler.java
  25. 26
      jme3-android/src/main/java/com/jme3/renderer/android/AndroidGLSurfaceView.java
  26. 96
      jme3-android/src/main/java/com/jme3/system/android/AndroidTimer.java
  27. 47
      jme3-android/src/main/java/com/jme3/system/android/OGLESContext.java
  28. 137
      jme3-core/src/main/java/com/jme3/material/Material.java
  29. 11
      jme3-core/src/main/java/com/jme3/material/Technique.java
  30. 17
      jme3-core/src/main/java/com/jme3/renderer/Caps.java
  31. 17
      jme3-core/src/main/java/com/jme3/renderer/RenderContext.java
  32. 30
      jme3-core/src/main/java/com/jme3/renderer/RenderManager.java
  33. 140
      jme3-core/src/main/resources/Common/MatDefs/Light/Lighting.frag
  34. 75
      jme3-core/src/main/resources/Common/MatDefs/Light/Lighting.j3md
  35. 107
      jme3-core/src/main/resources/Common/MatDefs/Light/Lighting.vert
  36. 218
      jme3-core/src/main/resources/Common/MatDefs/Light/SPLighting.frag
  37. 172
      jme3-core/src/main/resources/Common/MatDefs/Light/SPLighting.vert
  38. 62
      jme3-core/src/main/resources/Common/ShaderLib/Lighting.glsllib
  39. 29
      jme3-core/src/main/resources/Common/ShaderLib/PhongLighting.glsllib
  40. 255
      jme3-examples/src/main/java/jme3test/light/TestManyLightsSingle.java
  41. 4
      jme3-lwjgl/src/main/java/com/jme3/renderer/lwjgl/LwjglGL1Renderer.java
  42. 336
      jme3-lwjgl/src/main/java/com/jme3/renderer/lwjgl/LwjglRenderer.java
  43. 25
      jme3-lwjgl/src/main/java/com/jme3/renderer/lwjgl/TextureUtil.java
  44. 615
      jme3-terrain/src/main/resources/Common/MatDefs/Terrain/SPTerrainLighting.frag
  45. 66
      jme3-terrain/src/main/resources/Common/MatDefs/Terrain/SPTerrainLighting.vert
  46. 52
      jme3-terrain/src/main/resources/Common/MatDefs/Terrain/TerrainLighting.frag
  47. 64
      jme3-terrain/src/main/resources/Common/MatDefs/Terrain/TerrainLighting.j3md
  48. 49
      jme3-terrain/src/main/resources/Common/MatDefs/Terrain/TerrainLighting.vert

@ -1,9 +1,5 @@
// OpenAL Soft r1.15.1
//String openALSoftUrl = 'http://repo.or.cz/w/openal-soft.git/snapshot/9b6a226da55a987cb883f425eeb568776ea12c8d.zip'
// OpenAL Soft r1.15.1 + Android OpenSL Support
String openALSoftUrl = 'http://repo.or.cz/w/openal-soft.git/snapshot/be25e6802dacad78876c6fa1d6a5c63797b8a9ed.zip'
// OpenAL Soft r1.15.1 latest build (at the time)
//String openALSoftUrl = 'http://repo.or.cz/w/openal-soft.git/snapshot/3f5914e0949ee12b504ee7254990e007ff8057ef.zip'
// OpenAL Soft r1.16
String openALSoftUrl = 'http://repo.or.cz/w/openal-soft.git/snapshot/e5016f814a265ed592a88acea95cf912c4bfdf12.zip'
String openALSoftZipFile = 'OpenALSoft.zip'
// OpenAL Soft directory the download is extracted into
@ -81,22 +77,23 @@ task generateOpenAlSoftHeaders(dependsOn: copyJmeOpenALSoft) << {
String classes = ""
.concat("com.jme3.audio.android.AndroidOpenALSoftAudioRenderer, ")
// println "openalsoft classes = " + classes
// println "openalsoft destDir = " + destDir
// println "openalsoft destDir = " + destDirPath
// println "openalsoft classpath = " + project.projectClassPath
ant.javah(
classpath: project.projectClassPath,
destdir: destDirPath,
class: classes
)
exec {
executable org.gradle.internal.jvm.Jvm.current().getExecutable('javah')
args '-d', destDirPath
args '-classpath', project.projectClassPath
args "com.jme3.audio.android.AndroidOpenALSoftAudioRenderer"
}
}
task buildOpenAlSoftNativeLib(type: Exec, dependsOn: generateOpenAlSoftHeaders) {
// println "openalsoft build dir: " + openalsoftBuildDir
// println "ndkCommandPath: " + project.ndkCommandPath
args 'TARGET_PLATFORM=android-9'
workingDir openalsoftBuildDir
executable rootProject.ndkCommandPath
args '-j8'
}
task updatePreCompiledOpenAlSoftLibs(type: Copy, dependsOn: buildOpenAlSoftNativeLib) {

@ -1,58 +1,68 @@
TARGET_PLATFORM := android-9
ROOT_PATH := $(call my-dir)
########################################################################################################
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := openalsoftjme
LOCAL_ARM_MODE := arm
LOCAL_PATH := $(ROOT_PATH)
LOCAL_C_INCLUDES := $(LOCAL_PATH) $(LOCAL_PATH)/include $(LOCAL_PATH)/OpenAL32/Include
LOCAL_CFLAGS := -ffast-math -DAL_BUILD_LIBRARY -DAL_ALEXT_PROTOTYPES
LOCAL_LDLIBS := -llog -Wl,-s
LOCAL_LDLIBS += -lOpenSLES
# LOCAL_CFLAGS += -DPOST_FROYO #-I$(ANDROID_NDK_ROOT)/platforms/android-9/arch-arm/usr/include/
# LOCAL_LDLIBS += -ldl -L$(ANDROID_NDK_ROOT)/platforms/android-9/arch-arm/usr/lib/
LOCAL_SRC_FILES := OpenAL32/alAuxEffectSlot.c \
OpenAL32/alBuffer.c \
OpenAL32/alEffect.c \
OpenAL32/alError.c \
OpenAL32/alExtension.c \
OpenAL32/alFilter.c \
OpenAL32/alListener.c \
OpenAL32/alSource.c \
OpenAL32/alState.c \
OpenAL32/alThunk.c \
Alc/ALc.c \
Alc/ALu.c \
Alc/alcConfig.c \
Alc/alcDedicated.c \
Alc/alcEcho.c \
Alc/alcModulator.c \
Alc/alcReverb.c \
Alc/alcRing.c \
Alc/alcThread.c \
Alc/bs2b.c \
Alc/helpers.c \
Alc/panning.c \
Alc/hrtf.c \
Alc/mixer.c \
Alc/mixer_c.c \
Alc/backends/loopback.c \
Alc/backends/null.c \
Alc/backends/opensl.c \
com_jme3_audio_android_AndroidOpenALSoftAudioRenderer.cpp
# Alc/backends/alsa.c \
# Alc/backends/android.c \
# Alc/alcChorus.c \
# Alc/alcFlanger.c \
# Alc/mixer_c.c \
# Alc/backends/loopback.c \
# Alc/backends/null.c \
LOCAL_C_INCLUDES += $(LOCAL_PATH) $(LOCAL_PATH)/include \
$(LOCAL_PATH)/OpenAL32/Include $(LOCAL_PATH)/Alc
LOCAL_CFLAGS := -std=c99 -ffast-math -DAL_BUILD_LIBRARY -DAL_ALEXT_PROTOTYPES
LOCAL_LDLIBS := -lOpenSLES -llog -Wl,-s
LOCAL_SRC_FILES := Alc/backends/opensl.c \
Alc/backends/loopback.c \
Alc/backends/wave.c \
Alc/backends/base.c \
Alc/backends/null.c \
Alc/ALc.c \
Alc/helpers.c \
Alc/bs2b.c \
Alc/alcRing.c \
Alc/effects/chorus.c \
Alc/effects/flanger.c \
Alc/effects/dedicated.c \
Alc/effects/reverb.c \
Alc/effects/distortion.c \
Alc/effects/autowah.c \
Alc/effects/equalizer.c \
Alc/effects/modulator.c \
Alc/effects/echo.c \
Alc/effects/compressor.c \
Alc/effects/null.c \
Alc/alcConfig.c \
Alc/ALu.c \
Alc/mixer_c.c \
Alc/panning.c \
Alc/hrtf.c \
Alc/mixer.c \
Alc/midi/soft.c \
Alc/midi/sf2load.c \
Alc/midi/dummy.c \
Alc/midi/fluidsynth.c \
Alc/midi/base.c \
common/uintmap.c \
common/atomic.c \
common/threads.c \
common/rwlock.c \
OpenAL32/alBuffer.c \
OpenAL32/alPreset.c \
OpenAL32/alListener.c \
OpenAL32/alEffect.c \
OpenAL32/alExtension.c \
OpenAL32/alThunk.c \
OpenAL32/alMidi.c \
OpenAL32/alSoundfont.c \
OpenAL32/alFontsound.c \
OpenAL32/alAuxEffectSlot.c \
OpenAL32/alError.c \
OpenAL32/alFilter.c \
OpenAL32/alSource.c \
OpenAL32/alState.c \
OpenAL32/sample_cvt.c \
com_jme3_audio_android_AndroidOpenALSoftAudioRenderer.cpp
include $(BUILD_SHARED_LIBRARY)

@ -1,3 +1,3 @@
APP_PLATFORM := android-9
APP_OPTIM := release
APP_ABI := all
#APP_ABI := armeabi-v7a

@ -1,147 +1,203 @@
#ifndef CONFIG_H
#define CONFIG_H
/* API declaration export attribute */
#define AL_API __attribute__((visibility("protected")))
#define ALC_API __attribute__((visibility("protected")))
/* Define to the library version */
#define ALSOFT_VERSION "1.15.1"
#define ALSOFT_VERSION "1.16.0"
#define ALIGN(x) __attribute__ ((aligned(x)))
#ifdef IN_IDE_PARSER
/* KDevelop's parser doesn't recognize the C99-standard restrict keyword, but
* recent versions (at least 4.5.1) do recognize GCC's __restrict. */
#define restrict __restrict
#endif
/* Define any available alignment declaration */
#define ALIGN(x) __attribute__((aligned(x)))
/* Define if we have the C11 aligned_alloc function */
/* #undef HAVE_ALIGNED_ALLOC */
/* Define if we have the posix_memalign function */
/* #undef HAVE_POSIX_MEMALIGN */
/* Define if we have the _aligned_malloc function */
/* #undef HAVE__ALIGNED_MALLOC */
/* Define if we have SSE CPU extensions */
/* #undef HAVE_SSE */
/* #undef HAVE_SSE2 */
/* #undef HAVE_SSE4_1 */
/* Define if we have ARM Neon CPU extensions */
/* #undef HAVE_NEON */
/* Define if we have the Android backend */
/* #define HAVE_ANDROID 1 */
/* Define if we have FluidSynth support */
/* #undef HAVE_FLUIDSYNTH */
/* Define if we have the ALSA backend */
/* #define HAVE_ALSA */
/* #undef HAVE_ALSA */
/* Define if we have the OSS backend */
/* #cmakedefine HAVE_OSS */
/* #undef HAVE_OSS */
/* Define if we have the Solaris backend */
/* #cmakedefine HAVE_SOLARIS */
/* #undef HAVE_SOLARIS */
/* Define if we have the SndIO backend */
/* #cmakedefine HAVE_SNDIO */
/* #undef HAVE_SNDIO */
/* Define if we have the QSA backend */
/* #undef HAVE_QSA */
/* Define if we have the MMDevApi backend */
/* #cmakedefine HAVE_MMDEVAPI */
/* #undef HAVE_MMDEVAPI */
/* Define if we have the DSound backend */
/* #cmakedefine HAVE_DSOUND */
/* #undef HAVE_DSOUND */
/* Define if we have the Windows Multimedia backend */
/* #cmakedefine HAVE_WINMM */
/* #undef HAVE_WINMM */
/* Define if we have the PortAudio backend */
/* #cmakedefine HAVE_PORTAUDIO */
/* #undef HAVE_PORTAUDIO */
/* Define if we have the PulseAudio backend */
/* #cmakedefine HAVE_PULSEAUDIO */
/* #undef HAVE_PULSEAUDIO */
/* Define if we have the CoreAudio backend */
/* #cmakedefine HAVE_COREAUDIO */
/* #undef HAVE_COREAUDIO */
/* Define if we have the OpenSL backend */
#define HAVE_OPENSL /* THIS BACKEND WORKS ON >=2.3 Android!! */
#define HAVE_OPENSL
/* Define if we have the Wave Writer backend */
/* #cmakedefine HAVE_WAVE */
/* Define if we have dlfcn.h */
#define HAVE_DLFCN_H
#define HAVE_WAVE
/* Define if we have the stat function */
#define HAVE_STAT
/* Define if we have the powf function */
/* #define HAVE_POWF 1 */
/* Define if we have the lrintf function */
#define HAVE_LRINTF
/* Define if we have the sqrtf function */
/* #define HAVE_SQRTF 1 */
/* Define if we have the strtof function */
/* #undef HAVE_STRTOF */
/* Define if we have the cosf function */
/* #define HAVE_COSF 1 */
/* Define if we have the __int64 type */
/* #undef HAVE___INT64 */
/* Define if we have the sinf function */
/* #define HAVE_SINF 1 */
/* Define to the size of a long int type */
#define SIZEOF_LONG 4
/* Define if we have the acosf function */
/* #define HAVE_ACOSF 1 */
/* Define to the size of a long long int type */
#define SIZEOF_LONG_LONG 8
/* Define if we have the asinf function */
/* #define HAVE_ASINF 1 */
/* Define if we have C99 variable-length array support */
#define HAVE_C99_VLA
/* Define if we have the atanf function */
/* #define HAVE_ATANF 1 */
/* Define if we have C99 _Bool support */
#define HAVE_C99_BOOL
/* Define if we have the atan2f function */
/* #define HAVE_ATAN2F 1 */
/* Define if we have C11 _Static_assert support */
#define HAVE_C11_STATIC_ASSERT
/* Define if we have the fabsf function */
/* #define HAVE_FABSF 1 */
/* Define if we have C11 _Alignas support */
/* #undef HAVE_C11_ALIGNAS */
/* Define if we have the log10f function */
/* #define HAVE_LOG10F 1 */
/* Define if we have C11 _Atomic support */
/* #undef HAVE_C11_ATOMIC */
/* Define if we have the floorf function */
/* #define HAVE_FLOORF 1 */
/* Define if we have GCC's destructor attribute */
#define HAVE_GCC_DESTRUCTOR
/* Define if we have the strtof function */
#define HAVE_STRTOF
/* Define if we have GCC's format attribute */
#define HAVE_GCC_FORMAT
/* Define if we have stdint.h */
#define HAVE_STDINT_H
/* Define if we have the __int64 type */
/* #cmakedefine HAVE___INT64 */
/* Define if we have stdbool.h */
#define HAVE_STDBOOL_H
/* Define to the size of a long int type */
#define SIZEOF_LONG 4
/* Define if we have stdalign.h */
/* #undef HAVE_STDALIGN_H */
/* Define to the size of a long long int type */
#define SIZEOF_LONG_LONG 8
/* Define if we have GCC's destructor attribute */
#define HAVE_GCC_DESTRUCTOR
/* Define if we have windows.h */
/* #undef HAVE_WINDOWS_H */
/* Define if we have GCC's format attribute */
#define HAVE_GCC_FORMAT
/* Define if we have dlfcn.h */
#define HAVE_DLFCN_H
/* Define if we have pthread_np.h */
/* #cmakedefine HAVE_PTHREAD_NP_H */
/* #undef HAVE_PTHREAD_NP_H */
/* Define if we have arm_neon.h */
/* #cmakedefine HAVE_ARM_NEON_H */
/* Define if we have alloca.h */
/* #undef HAVE_ALLOCA_H */
/* Define if we have guiddef.h */
/* #cmakedefine HAVE_GUIDDEF_H */
/* Define if we have malloc.h */
#define HAVE_MALLOC_H
/* Define if we have ftw.h */
/* #undef HAVE_FTW_H */
/* Define if we have io.h */
/* #undef HAVE_IO_H */
/* Define if we have strings.h */
#define HAVE_STRINGS_H
/* Define if we have cpuid.h */
/* #undef HAVE_CPUID_H */
/* Define if we have intrin.h */
/* #undef HAVE_INTRIN_H */
/* Define if we have sys/sysconf.h */
#define HAVE_SYS_SYSCONF_H
/* Define if we have guiddef.h */
/* #cmakedefine HAVE_INITGUID_H */
/* #undef HAVE_GUIDDEF_H */
/* Define if we have initguid.h */
/* #undef HAVE_INITGUID_H */
/* Define if we have ieeefp.h */
/* #cmakedefine HAVE_IEEEFP_H */
/* #undef HAVE_IEEEFP_H */
/* Define if we have float.h */
/* #cmakedefine HAVE_FLOAT_H */
/* Define if we have fpu_control.h */
/* #cmakedefine HAVE_FPU_CONTROL_H */
#define HAVE_FLOAT_H
/* Define if we have fenv.h */
#define HAVE_FENV_H
/* Define if we have fesetround() */
/* #cmakedefine HAVE_FESETROUND */
/* Define if we have GCC's __get_cpuid() */
/* #undef HAVE_GCC_GET_CPUID */
/* Define if we have the __cpuid() intrinsic */
/* #undef HAVE_CPUID_INTRINSIC */
/* Define if we have _controlfp() */
/* #cmakedefine HAVE__CONTROLFP */
/* #undef HAVE__CONTROLFP */
/* Define if we have __control87_2() */
/* #undef HAVE___CONTROL87_2 */
/* Define if we have ftw() */
/* #undef HAVE_FTW */
/* Define if we have _wfindfirst() */
/* #undef HAVE__WFINDFIRST */
/* Define if we have pthread_setschedparam() */
#define HAVE_PTHREAD_SETSCHEDPARAM
/* Define if we have the restrict keyword */
/* #cmakedefine HAVE_RESTRICT 1 */
/* Define if we have pthread_setname_np() */
#define HAVE_PTHREAD_SETNAME_NP
/* Define if we have the __restrict keyword */
#define RESTRICT __restrict
/* Define if we have pthread_set_name_np() */
/* #undef HAVE_PTHREAD_SET_NAME_NP */
#endif
/* Define if we have pthread_mutexattr_setkind_np() */
/* #undef HAVE_PTHREAD_MUTEXATTR_SETKIND_NP */
/* Define if we have pthread_mutex_timedlock() */
/* #undef HAVE_PTHREAD_MUTEX_TIMEDLOCK */

@ -1,13 +1,15 @@
TARGET_PLATFORM := android-9
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := stbijme
LOCAL_C_INCLUDES := $(LOCAL_PATH)
LOCAL_CFLAGS += -O2
LOCAL_EXPORT_C_INCLUDES := $(LOCAL_PATH)
LOCAL_SRC_FILES := $(subst $(LOCAL_PATH)/,, $(wildcard $(LOCAL_PATH)/*.c))
#adds zlib
LOCAL_LDLIBS += -lz -llog
LOCAL_C_INCLUDES += $(LOCAL_PATH)
LOCAL_LDLIBS := -lz -llog -Wl,-s
LOCAL_SRC_FILES := com_jme3_texture_plugins_AndroidNativeImageLoader.c
include $(BUILD_SHARED_LIBRARY)

@ -1,3 +1,3 @@
APP_PLATFORM := android-9
APP_OPTIM := release
APP_ABI := all
#APP_ABI := armeabi-v7a

@ -6,8 +6,9 @@
#include <assert.h>
#include <string.h>
#include <time.h>
#define STBI_HEADER_FILE_ONLY
#include "stb_image.c"
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
typedef unsigned int uint32;

@ -1,6 +1,6 @@
// stb_image url for download
String stbiUrl = 'http://www.nothings.org/stb_image.c'
String stbiDownloadTarget = 'stb_image.c'
String stbiUrl = 'https://raw.githubusercontent.com/nothings/stb/master/stb_image.h'
String stbiDownloadTarget = 'stb_image.h'
// stb_image is not downloaded. The single source file is included in the repo
String stbiFolder = 'stb_image'
@ -63,20 +63,21 @@ task generateStbiHeaders(dependsOn: copyStbiJmeFiles) << {
// println "stb_image destDir = " + destDir
// println "stb_image classpath = " + project.projectClassPath
ant.javah(
classpath: project.projectClassPath,
destdir: destDirPath,
class: classes
)
exec {
executable org.gradle.internal.jvm.Jvm.current().getExecutable('javah')
args '-d', destDirPath
args '-classpath', project.projectClassPath
args "com.jme3.texture.plugins.AndroidNativeImageLoader"
}
}
task buildStbiNativeLib(type: Exec, dependsOn: generateStbiHeaders) {
// println "stb_image build dir: " + buildLibDir
// println "ndkCommandPath: " + project.ndkCommandPath
args 'TARGET_PLATFORM=android-9'
// println "stb_image build dir: " + stbiBuildDir
// println "ndkCommandPath: " + rootProject.ndkCommandPath
workingDir stbiBuildDir
executable rootProject.ndkCommandPath
args '-j8'
}
task updatePreCompiledStbiLibs(type: Copy, dependsOn: buildStbiNativeLib) {

@ -6,6 +6,7 @@ import android.content.DialogInterface;
import android.content.pm.ActivityInfo;
import android.graphics.drawable.Drawable;
import android.graphics.drawable.NinePatchDrawable;
import android.opengl.GLSurfaceView;
import android.os.Bundle;
import android.util.Log;
import android.view.*;
@ -21,7 +22,6 @@ import com.jme3.input.android.AndroidSensorJoyInput;
import com.jme3.input.controls.TouchListener;
import com.jme3.input.controls.TouchTrigger;
import com.jme3.input.event.TouchEvent;
import com.jme3.renderer.android.AndroidGLSurfaceView;
import com.jme3.system.AppSettings;
import com.jme3.system.SystemListener;
import com.jme3.system.android.AndroidConfigChooser.ConfigType;
@ -195,7 +195,7 @@ public class AndroidHarness extends Activity implements TouchListener, DialogInt
*/
protected int screenOrientation = ActivityInfo.SCREEN_ORIENTATION_SENSOR;
protected OGLESContext ctx;
protected AndroidGLSurfaceView view = null;
protected GLSurfaceView view = null;
protected boolean isGLThreadPaused = true;
protected ImageView splashImageView = null;
protected FrameLayout frameLayout = null;

@ -32,6 +32,7 @@
package com.jme3.input.android;
import android.opengl.GLSurfaceView;
import android.os.Build;
import android.view.View;
import com.jme3.input.RawInputListener;
@ -41,7 +42,6 @@ import com.jme3.input.event.KeyInputEvent;
import com.jme3.input.event.MouseButtonEvent;
import com.jme3.input.event.MouseMotionEvent;
import com.jme3.input.event.TouchEvent;
import com.jme3.renderer.android.AndroidGLSurfaceView;
import com.jme3.system.AppSettings;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.logging.Level;
@ -67,7 +67,7 @@ public class AndroidInputHandler implements TouchInput {
// Internal
private AndroidGLSurfaceView view;
private GLSurfaceView view;
private AndroidTouchHandler touchHandler;
private AndroidKeyHandler keyHandler;
private AndroidGestureHandler gestureHandler;
@ -112,7 +112,7 @@ public class AndroidInputHandler implements TouchInput {
if (gestureHandler != null) {
gestureHandler.setView(view);
}
this.view = (AndroidGLSurfaceView)view;
this.view = (GLSurfaceView)view;
}
public View getView() {

@ -1,26 +0,0 @@
package com.jme3.renderer.android;
import android.content.Context;
import android.opengl.GLSurfaceView;
import android.util.AttributeSet;
import java.util.logging.Logger;
/**
* <code>AndroidGLSurfaceView</code> is derived from GLSurfaceView
* @author iwgeric
*
*/
public class AndroidGLSurfaceView extends GLSurfaceView {
private final static Logger logger = Logger.getLogger(AndroidGLSurfaceView.class.getName());
public AndroidGLSurfaceView(Context ctx, AttributeSet attribs) {
super(ctx, attribs);
}
public AndroidGLSurfaceView(Context ctx) {
super(ctx);
}
}

@ -1,96 +0,0 @@
/*
* Copyright (c) 2009-2012 jMonkeyEngine
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of 'jMonkeyEngine' nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package com.jme3.system.android;
import com.jme3.system.Timer;
/**
* <code>AndroidTimer</code> is a System.nanoTime implementation of <code>Timer</code>.
*/
public class AndroidTimer extends Timer {
//private static final long TIMER_RESOLUTION = 1000L;
//private static final float INVERSE_TIMER_RESOLUTION = 1f/1000L;
private static final long TIMER_RESOLUTION = 1000000000L;
private static final float INVERSE_TIMER_RESOLUTION = 1f/1000000000L;
private long startTime;
private long previousTime;
private float tpf;
private float fps;
public AndroidTimer() {
//startTime = System.currentTimeMillis();
startTime = System.nanoTime();
}
/**
* Returns the time in seconds. The timer starts
* at 0.0 seconds.
*
* @return the current time in seconds
*/
@Override
public float getTimeInSeconds() {
return getTime() * INVERSE_TIMER_RESOLUTION;
}
public long getTime() {
//return System.currentTimeMillis() - startTime;
return System.nanoTime() - startTime;
}
public long getResolution() {
return TIMER_RESOLUTION;
}
public float getFrameRate() {
return fps;
}
public float getTimePerFrame() {
return tpf;
}
public void update() {
tpf = (getTime() - previousTime) * (1.0f / TIMER_RESOLUTION);
fps = 1.0f / tpf;
previousTime = getTime();
}
public void reset() {
//startTime = System.currentTimeMillis();
startTime = System.nanoTime();
previousTime = getTime();
}
}

@ -47,13 +47,11 @@ import android.view.ViewGroup.LayoutParams;
import android.widget.EditText;
import android.widget.FrameLayout;
import com.jme3.input.*;
import com.jme3.input.android.AndroidInput;
import com.jme3.input.android.AndroidSensorJoyInput;
import com.jme3.input.android.AndroidInputHandler;
import com.jme3.input.controls.SoftTextDialogInputListener;
import com.jme3.input.dummy.DummyKeyInput;
import com.jme3.input.dummy.DummyMouseInput;
import com.jme3.renderer.android.AndroidGLSurfaceView;
import com.jme3.renderer.android.OGLESShaderRenderer;
import com.jme3.system.*;
import java.util.concurrent.atomic.AtomicBoolean;
@ -80,11 +78,6 @@ public class OGLESContext implements JmeContext, GLSurfaceView.Renderer, SoftTex
protected AndroidInputHandler androidInput;
protected int minFrameDuration = 0; // No FPS cap
protected JoyInput androidSensorJoyInput = null;
/**
* EGL_RENDERABLE_TYPE: EGL_OPENGL_ES_BIT = OpenGL ES 1.0 |
* EGL_OPENGL_ES2_BIT = OpenGL ES 2.0
*/
protected int clientOpenGLESVersion = 1;
public OGLESContext() {
}
@ -103,12 +96,17 @@ public class OGLESContext implements JmeContext, GLSurfaceView.Renderer, SoftTex
*
* @return GLSurfaceView The newly created view
*/
public AndroidGLSurfaceView createView() {
AndroidGLSurfaceView view;
int buildVersion = Build.VERSION.SDK_INT;
public GLSurfaceView createView() {
Context appContext = JmeAndroidSystem.getActivity().getApplication();
ActivityManager am = (ActivityManager) appContext.getSystemService(Context.ACTIVITY_SERVICE);
ConfigurationInfo info = am.getDeviceConfigurationInfo();
if (info.reqGlEsVersion < 0x20000) {
throw new UnsupportedOperationException("OpenGL ES 2.0 is not supported on this device");
}
// Start to set up the view
view = new AndroidGLSurfaceView(JmeAndroidSystem.getActivity().getApplication());
GLSurfaceView view = new GLSurfaceView(appContext);
if (androidInput == null) {
androidInput = new AndroidInputHandler();
}
@ -117,19 +115,10 @@ public class OGLESContext implements JmeContext, GLSurfaceView.Renderer, SoftTex
// setEGLContextClientVersion must be set before calling setRenderer
// this means it cannot be set in AndroidConfigChooser (too late)
int rawOpenGLESVersion = getOpenGLESVersion();
// logger.log(Level.FINE, "clientOpenGLESVersion {0}.{1}",
// new Object[]{clientOpenGLESVersion>>16, clientOpenGLESVersion<<16});
if (rawOpenGLESVersion < 0x20000) {
throw new UnsupportedOperationException("OpenGL ES 2.0 is not supported on this device");
} else {
clientOpenGLESVersion = 2;
view.setEGLContextClientVersion(clientOpenGLESVersion);
}
view.setEGLContextClientVersion(2);
view.setFocusableInTouchMode(true);
view.setFocusable(true);
view.getHolder().setType(SurfaceHolder.SURFACE_TYPE_GPU);
// setFormat must be set before AndroidConfigChooser is called by the surfaceview.
// if setFormat is called after ConfigChooser is called, then execution
@ -160,24 +149,12 @@ public class OGLESContext implements JmeContext, GLSurfaceView.Renderer, SoftTex
// Not destroying and recreating the EGL context
// will help with resume time by reusing the existing context to avoid
// reloading all the OpenGL objects.
if (buildVersion >= 11) {
if (Build.VERSION.SDK_INT >= 11) {
view.setPreserveEGLContextOnPause(true);
}
return view;
}
/**
* Get the OpenGL ES version
* @return version returns the int value of the GLES version
*/
public int getOpenGLESVersion() {
ActivityManager am =
(ActivityManager) JmeAndroidSystem.getActivity().getApplication().getSystemService(Context.ACTIVITY_SERVICE);
ConfigurationInfo info = am.getDeviceConfigurationInfo();
logger.log(Level.FINE, "OpenGL Version {0}:", info.getGlEsVersion());
return info.reqGlEsVersion;
// return (info.reqGlEsVersion >= 0x20000);
}
// renderer:initialize
@Override
@ -207,7 +184,7 @@ public class OGLESContext implements JmeContext, GLSurfaceView.Renderer, SoftTex
}
});
timer = new AndroidTimer();
timer = new NanoTimer();
renderer = new OGLESShaderRenderer();
renderer.initialize();

@ -42,7 +42,6 @@ import com.jme3.material.TechniqueDef.LightMode;
import com.jme3.material.TechniqueDef.ShadowMode;
import com.jme3.math.*;
import com.jme3.renderer.Caps;
import com.jme3.renderer.GL1Renderer;
import com.jme3.renderer.RenderManager;
import com.jme3.renderer.Renderer;
import com.jme3.renderer.RendererException;
@ -52,7 +51,6 @@ import com.jme3.scene.Mesh;
import com.jme3.scene.instancing.InstancedGeometry;
import com.jme3.shader.Shader;
import com.jme3.shader.Uniform;
import com.jme3.shader.UniformBindingManager;
import com.jme3.shader.VarType;
import com.jme3.texture.Texture;
import com.jme3.texture.image.ColorSpace;
@ -697,12 +695,15 @@ public class Material implements CloneableSmartAsset, Cloneable, Savable {
setParam(name, VarType.Vector4, value);
}
private ColorRGBA getAmbientColor(LightList lightList) {
private ColorRGBA getAmbientColor(LightList lightList, boolean removeLights) {
ambientLightColor.set(0, 0, 0, 1);
for (int j = 0; j < lightList.size(); j++) {
Light l = lightList.get(j);
if (l instanceof AmbientLight) {
ambientLightColor.addLocal(l.getColor());
if(removeLights){
lightList.remove(l);
}
}
}
ambientLightColor.a = 1.0f;
@ -741,47 +742,73 @@ public class Material implements CloneableSmartAsset, Cloneable, Savable {
* g_LightPosition.w is the inverse radius (1/r) of the light (for
* attenuation) <br/> </p>
*/
protected void updateLightListUniforms(Shader shader, Geometry g, LightList lightList, int numLights) {
protected int updateLightListUniforms(Shader shader, Geometry g, LightList lightList, int numLights, RenderManager rm, int startIndex) {
if (numLights == 0) { // this shader does not do lighting, ignore.
return;
return 0;
}
Uniform lightColor = shader.getUniform("g_LightColor");
Uniform lightPos = shader.getUniform("g_LightPosition");
Uniform lightDir = shader.getUniform("g_LightDirection");
lightColor.setVector4Length(numLights);
lightPos.setVector4Length(numLights);
lightDir.setVector4Length(numLights);
Uniform lightData = shader.getUniform("g_LightData");
lightData.setVector4Length(numLights * 3);//8 lights * max 3
Uniform ambientColor = shader.getUniform("g_AmbientLightColor");
ambientColor.setValue(VarType.Vector4, getAmbientColor(lightList));
int lightIndex = 0;
for (int i = 0; i < numLights; i++) {
if (lightList.size() <= i) {
lightColor.setVector4InArray(0f, 0f, 0f, 0f, lightIndex);
lightPos.setVector4InArray(0f, 0f, 0f, 0f, lightIndex);
} else {
Light l = lightList.get(i);
if (startIndex != 0) {
// apply additive blending for 2nd and future passes
rm.getRenderer().applyRenderState(additiveLight);
ambientColor.setValue(VarType.Vector4, ColorRGBA.Black);
}else{
ambientColor.setValue(VarType.Vector4, getAmbientColor(lightList,true));
}
int lightDataIndex = 0;
TempVars vars = TempVars.get();
Vector4f tmpVec = vars.vect4f1;
int curIndex;
int endIndex = numLights + startIndex;
for (curIndex = startIndex; curIndex < endIndex && curIndex < lightList.size(); curIndex++) {
Light l = lightList.get(curIndex);
if(l.getType() == Light.Type.Ambient){
endIndex++;
continue;
}
ColorRGBA color = l.getColor();
lightColor.setVector4InArray(color.getRed(),
//Color
lightData.setVector4InArray(color.getRed(),
color.getGreen(),
color.getBlue(),
l.getType().getId(),
i);
lightDataIndex);
lightDataIndex++;
switch (l.getType()) {
case Directional:
DirectionalLight dl = (DirectionalLight) l;
Vector3f dir = dl.getDirection();
lightPos.setVector4InArray(dir.getX(), dir.getY(), dir.getZ(), -1, lightIndex);
//Data directly sent in view space to avoid a matrix mult for each pixel
tmpVec.set(dir.getX(), dir.getY(), dir.getZ(), 0.0f);
rm.getCurrentCamera().getViewMatrix().mult(tmpVec, tmpVec);
// tmpVec.divideLocal(tmpVec.w);
// tmpVec.normalizeLocal();
lightData.setVector4InArray(tmpVec.getX(), tmpVec.getY(), tmpVec.getZ(), -1, lightDataIndex);
lightDataIndex++;
//PADDING
lightData.setVector4InArray(0,0,0,0, lightDataIndex);
lightDataIndex++;
break;
case Point:
PointLight pl = (PointLight) l;
Vector3f pos = pl.getPosition();
float invRadius = pl.getInvRadius();
lightPos.setVector4InArray(pos.getX(), pos.getY(), pos.getZ(), invRadius, lightIndex);
tmpVec.set(pos.getX(), pos.getY(), pos.getZ(), 1.0f);
rm.getCurrentCamera().getViewMatrix().mult(tmpVec, tmpVec);
//tmpVec.divideLocal(tmpVec.w);
lightData.setVector4InArray(tmpVec.getX(), tmpVec.getY(), tmpVec.getZ(), invRadius, lightDataIndex);
lightDataIndex++;
//PADDING
lightData.setVector4InArray(0,0,0,0, lightDataIndex);
lightDataIndex++;
break;
case Spot:
SpotLight sl = (SpotLight) l;
@ -789,27 +816,32 @@ public class Material implements CloneableSmartAsset, Cloneable, Savable {
Vector3f dir2 = sl.getDirection();
float invRange = sl.getInvSpotRange();
float spotAngleCos = sl.getPackedAngleCos();
lightPos.setVector4InArray(pos2.getX(), pos2.getY(), pos2.getZ(), invRange, lightIndex);
lightDir.setVector4InArray(dir2.getX(), dir2.getY(), dir2.getZ(), spotAngleCos, lightIndex);
tmpVec.set(pos2.getX(), pos2.getY(), pos2.getZ(), 1.0f);
rm.getCurrentCamera().getViewMatrix().mult(tmpVec, tmpVec);
// tmpVec.divideLocal(tmpVec.w);
lightData.setVector4InArray(tmpVec.getX(), tmpVec.getY(), tmpVec.getZ(), invRange, lightDataIndex);
lightDataIndex++;
//We transform the spot direction in view space here to save 5 varying later in the lighting shader
//one vec4 less and a vec4 that becomes a vec3
//the downside is that spotAngleCos decoding happens now in the frag shader.
tmpVec.set(dir2.getX(), dir2.getY(), dir2.getZ(), 0.0f);
rm.getCurrentCamera().getViewMatrix().mult(tmpVec, tmpVec);
tmpVec.normalizeLocal();
lightData.setVector4InArray(tmpVec.getX(), tmpVec.getY(), tmpVec.getZ(), spotAngleCos, lightDataIndex);
lightDataIndex++;
break;
case Ambient:
// skip this light. Does not increase lightIndex
continue;
default:
throw new UnsupportedOperationException("Unknown type of light: " + l.getType());
}
}
lightIndex++;
}
while (lightIndex < numLights) {
lightColor.setVector4InArray(0f, 0f, 0f, 0f, lightIndex);
lightPos.setVector4InArray(0f, 0f, 0f, 0f, lightIndex);
lightIndex++;
vars.release();
//Padding of unsued buffer space
while(lightDataIndex < numLights * 3) {
lightData.setVector4InArray(0f, 0f, 0f, 0f, lightDataIndex);
lightDataIndex++;
}
return curIndex;
}
protected void renderMultipassLighting(Shader shader, Geometry g, LightList lightList, RenderManager rm) {
@ -830,7 +862,7 @@ public class Material implements CloneableSmartAsset, Cloneable, Savable {
if (isFirstLight) {
// set ambient color for first light only
ambientColor.setValue(VarType.Vector4, getAmbientColor(lightList));
ambientColor.setValue(VarType.Vector4, getAmbientColor(lightList, false));
isFirstLight = false;
isSecondLight = true;
} else if (isSecondLight) {
@ -885,9 +917,9 @@ public class Material implements CloneableSmartAsset, Cloneable, Savable {
tmpLightPosition.set(pos2.getX(), pos2.getY(), pos2.getZ(), invRange);
lightPos.setValue(VarType.Vector4, tmpLightPosition);
//We transform the spot directoin in view space here to save 5 varying later in the lighting shader
//We transform the spot direction in view space here to save 5 varying later in the lighting shader
//one vec4 less and a vec4 that becomes a vec3
//the downside is that spotAngleCos decoding happen now in the frag shader.
//the downside is that spotAngleCos decoding happens now in the frag shader.
tmpVec.set(dir2.getX(), dir2.getY(), dir2.getZ(), 0);
rm.getCurrentCamera().getViewMatrix().mult(tmpVec, tmpVec);
tmpLightDirection.set(tmpVec.getX(), tmpVec.getY(), tmpVec.getZ(), spotAngleCos);
@ -906,7 +938,7 @@ public class Material implements CloneableSmartAsset, Cloneable, Savable {
if (isFirstLight && lightList.size() > 0) {
// There are only ambient lights in the scene. Render
// a dummy "normal light" so we can see the ambient
ambientColor.setValue(VarType.Vector4, getAmbientColor(lightList));
ambientColor.setValue(VarType.Vector4, getAmbientColor(lightList, false));
lightColor.setValue(VarType.Vector4, ColorRGBA.BlackNoAlpha);
lightPos.setValue(VarType.Vector4, nullDirLight);
r.setShader(shader);
@ -957,7 +989,10 @@ public class Material implements CloneableSmartAsset, Cloneable, Savable {
// use the first one that supports all the caps
tech = new Technique(this, techDef);
techniques.put(name, tech);
break;
if(tech.getDef().getLightMode() == renderManager.getPreferredLightMode() ||
tech.getDef().getLightMode() == LightMode.Disable){
break;
}
}
lastTech = techDef;
}
@ -990,7 +1025,7 @@ public class Material implements CloneableSmartAsset, Cloneable, Savable {
}
technique = tech;
tech.makeCurrent(def.getAssetManager(), true, rendererCaps);
tech.makeCurrent(def.getAssetManager(), true, rendererCaps, renderManager);
// shader was changed
sortingId = -1;
@ -1000,7 +1035,7 @@ public class Material implements CloneableSmartAsset, Cloneable, Savable {
if (technique == null) {
selectTechnique("Default", rm);
} else {
technique.makeCurrent(def.getAssetManager(), false, rm.getRenderer().getCaps());
technique.makeCurrent(def.getAssetManager(), false, rm.getRenderer().getCaps(), rm);
}
}
@ -1162,8 +1197,14 @@ public class Material implements CloneableSmartAsset, Cloneable, Savable {
r.setLighting(null);
break;
case SinglePass:
updateLightListUniforms(shader, geom, lights, 4);
break;
int nbRenderedLights = 0;
resetUniformsNotSetByCurrent(shader);
while(nbRenderedLights < lights.size()){
nbRenderedLights = updateLightListUniforms(shader, geom, lights, rm.getSinglePassLightBatchSize(), rm, nbRenderedLights);
r.setShader(shader);
renderMeshFromGeometry(r, geom);
}
return;
case FixedPipeline:
r.setLighting(lights);
break;

@ -33,8 +33,8 @@ package com.jme3.material;
import com.jme3.asset.AssetManager;
import com.jme3.renderer.Caps;
import com.jme3.renderer.RenderManager;
import com.jme3.shader.*;
import com.jme3.util.ListMap;
import java.util.ArrayList;
import java.util.EnumSet;
import java.util.List;
@ -172,7 +172,7 @@ public class Technique /* implements Savable */ {
*
* @param assetManager The asset manager to use for loading shaders.
*/
public void makeCurrent(AssetManager assetManager, boolean techniqueSwitched, EnumSet<Caps> rendererCaps) {
public void makeCurrent(AssetManager assetManager, boolean techniqueSwitched, EnumSet<Caps> rendererCaps, RenderManager rm) {
if (!def.isUsingShaders()) {
// No shaders are used, no processing is neccessary.
return;
@ -182,6 +182,13 @@ public class Technique /* implements Savable */ {
if (defines.update(owner.getParamsMap(), def)) {
needReload = true;
}
if(getDef().getLightMode()== TechniqueDef.LightMode.SinglePass){
defines.set("SINGLE_PASS_LIGHTING", VarType.Boolean, true);
defines.set("NB_LIGHTS", VarType.Int, rm.getSinglePassLightBatchSize()*3 );
}else{
defines.set("SINGLE_PASS_LIGHTING", VarType.Boolean, null);
}
}
if (needReload) {

@ -236,7 +236,22 @@ public enum Caps {
/**
* Supports sRGB framebuffers and sRGB texture format
*/
Srgb;
Srgb,
/**
* Supports blitting framebuffers.
*/
FrameBufferBlit,
/**
* Supports {@link Format#DXT1} and sister formats.
*/
TextureCompressionS3TC,
/**
* Supports anisotropic texture filtering.
*/
TextureFilterAnisotropic;
/**
* Returns true if given the renderer capabilities, the texture

@ -35,6 +35,7 @@ import com.jme3.material.RenderState;
import com.jme3.math.ColorRGBA;
import com.jme3.scene.Mesh;
import com.jme3.scene.VertexBuffer;
import com.jme3.shader.Shader;
import com.jme3.texture.FrameBuffer;
import com.jme3.texture.Image;
@ -139,11 +140,21 @@ public class RenderContext {
*/
public int boundShaderProgram;
/**
* @see Renderer#setShader(com.jme3.shader.Shader)
*/
public Shader boundShader;
/**
* @see Renderer#setFrameBuffer(com.jme3.texture.FrameBuffer)
*/
public int boundFBO = 0;
/**
* @see Renderer#setFrameBuffer(com.jme3.texture.FrameBuffer)
*/
public FrameBuffer boundFB;
/**
* Currently bound Renderbuffer
*
@ -279,6 +290,10 @@ public class RenderContext {
*/
public RenderState.TestFunction alphaFunc = RenderState.TestFunction.Greater;
public int initialDrawBuf;
public int initialReadBuf;
/**
* Reset the RenderContext to default GL state
*/
@ -298,7 +313,9 @@ public class RenderContext {
blendMode = RenderState.BlendMode.Off;
wireframe = false;
boundShaderProgram = 0;
boundShader = null;
boundFBO = 0;
boundFB = null;
boundRB = 0;
boundDrawBuf = -1;
boundReadBuf = -1;

@ -38,6 +38,7 @@ import com.jme3.material.Material;
import com.jme3.material.MaterialDef;
import com.jme3.material.RenderState;
import com.jme3.material.Technique;
import com.jme3.material.TechniqueDef;
import com.jme3.math.*;
import com.jme3.post.SceneProcessor;
import com.jme3.profile.AppProfiler;
@ -89,6 +90,8 @@ public class RenderManager {
private boolean handleTranlucentBucket = true;
private AppProfiler prof;
private LightFilter lightFilter = new DefaultLightFilter();
private TechniqueDef.LightMode preferredLightMode = TechniqueDef.LightMode.MultiPass;
private int singlePassLightBatchSize = 1;
/**
* Create a high-level rendering interface over the
@ -780,6 +783,33 @@ public class RenderManager {
vp.getQueue().clear();
}
/**
* Sets the light filter to use when rendering Lighted Geometries
*
* @see LightFilter
* @param lightFilter The light filter tose. Set it to null if you want all lights to be rendered
*/
public void setLightFilter(LightFilter lightFilter) {
this.lightFilter = lightFilter;
}
public void setPreferredLightMode(TechniqueDef.LightMode preferredLightMode) {
this.preferredLightMode = preferredLightMode;
}
public TechniqueDef.LightMode getPreferredLightMode() {
return preferredLightMode;
}
public int getSinglePassLightBatchSize() {
return singlePassLightBatchSize;
}
public void setSinglePassLightBatchSize(int singlePassLightBatchSize) {
this.singlePassLightBatchSize = singlePassLightBatchSize;
}
/**
* Render the given viewport queues.
* <p>

@ -1,7 +1,9 @@
#import "Common/ShaderLib/Parallax.glsllib"
#import "Common/ShaderLib/Optics.glsllib"
#define ATTENUATION
//#define HQ_ATTENUATION
#ifndef VERTEX_LIGHTING
#import "Common/ShaderLib/PhongLighting.glsllib"
#import "Common/ShaderLib/Lighting.glsllib"
#endif
varying vec2 texCoord;
#ifdef SEPARATE_TEXCOORD
@ -58,82 +60,14 @@ varying vec3 SpecularSum;
uniform float m_AlphaDiscardThreshold;
#ifndef VERTEX_LIGHTING
uniform float m_Shininess;
#ifdef HQ_ATTENUATION
uniform vec4 g_LightPosition;
#endif
#ifdef USE_REFLECTION
uniform float m_ReflectionPower;
uniform float m_ReflectionIntensity;
varying vec4 refVec;
uniform ENVMAP m_EnvMap;
#endif
float tangDot(in vec3 v1, in vec3 v2){
float d = dot(v1,v2);
#ifdef V_TANGENT
d = 1.0 - d*d;
return step(0.0, d) * sqrt(d);
#else
return d;
#endif
}
float lightComputeDiffuse(in vec3 norm, in vec3 lightdir, in vec3 viewdir){
#ifdef MINNAERT
float NdotL = max(0.0, dot(norm, lightdir));
float NdotV = max(0.0, dot(norm, viewdir));
return NdotL * pow(max(NdotL * NdotV, 0.1), -1.0) * 0.5;
#else
return max(0.0, dot(norm, lightdir));
#endif
}
uniform float m_Shininess;
#ifdef USE_REFLECTION
uniform float m_ReflectionPower;
uniform float m_ReflectionIntensity;
varying vec4 refVec;
float lightComputeSpecular(in vec3 norm, in vec3 viewdir, in vec3 lightdir, in float shiny){
// NOTE: check for shiny <= 1 removed since shininess is now
// 1.0 by default (uses matdefs default vals)
#ifdef LOW_QUALITY
// Blinn-Phong
// Note: preferably, H should be computed in the vertex shader
vec3 H = (viewdir + lightdir) * vec3(0.5);
return pow(max(tangDot(H, norm), 0.0), shiny);
#elif defined(WARDISO)
// Isotropic Ward
vec3 halfVec = normalize(viewdir + lightdir);
float NdotH = max(0.001, tangDot(norm, halfVec));
float NdotV = max(0.001, tangDot(norm, viewdir));
float NdotL = max(0.001, tangDot(norm, lightdir));
float a = tan(acos(NdotH));
float p = max(shiny/128.0, 0.001);
return NdotL * (1.0 / (4.0*3.14159265*p*p)) * (exp(-(a*a)/(p*p)) / (sqrt(NdotV * NdotL)));
#else
// Standard Phong
vec3 R = reflect(-lightdir, norm);
return pow(max(tangDot(R, viewdir), 0.0), shiny);
uniform ENVMAP m_EnvMap;
#endif
}
vec2 computeLighting(in vec3 wvNorm, in vec3 wvViewDir, in vec3 wvLightDir){
float diffuseFactor = lightComputeDiffuse(wvNorm, wvLightDir, wvViewDir);
float specularFactor = lightComputeSpecular(wvNorm, wvViewDir, wvLightDir, m_Shininess);
#ifdef HQ_ATTENUATION
float att = clamp(1.0 - g_LightPosition.w * length(lightVec), 0.0, 1.0);
#else
float att = vLightDir.w;
#endif
if (m_Shininess <= 1.0) {
specularFactor = 0.0; // should be one instruction on most cards ..
}
specularFactor *= diffuseFactor;
return vec2(diffuseFactor, specularFactor) * vec2(att);
}
#endif
void main(){
@ -172,39 +106,12 @@ void main(){
#ifdef ALPHAMAP
alpha = alpha * texture2D(m_AlphaMap, newTexCoord).r;
#endif
if(alpha < m_AlphaDiscardThreshold){
discard;
}
#ifndef VERTEX_LIGHTING
float spotFallOff = 1.0;
#if __VERSION__ >= 110
// allow use of control flow
if(g_LightDirection.w != 0.0){
#endif
vec3 L = normalize(lightVec.xyz);
vec3 spotdir = normalize(g_LightDirection.xyz);
float curAngleCos = dot(-L, spotdir);
float innerAngleCos = floor(g_LightDirection.w) * 0.001;
float outerAngleCos = fract(g_LightDirection.w);
float innerMinusOuter = innerAngleCos - outerAngleCos;
spotFallOff = (curAngleCos - outerAngleCos) / innerMinusOuter;
#ifdef DISCARD_ALPHA
if(alpha < m_AlphaDiscardThreshold){
discard;
}
#endif
#if __VERSION__ >= 110
if(spotFallOff <= 0.0){
gl_FragColor.rgb = AmbientSum * diffuseColor.rgb;
gl_FragColor.a = alpha;
return;
}else{
spotFallOff = clamp(spotFallOff, 0.0, 1.0);
}
}
#else
spotFallOff = clamp(spotFallOff, step(g_LightDirection.w, 0.001), 1.0);
#endif
#endif
// ***********************
// Read from textures
@ -257,8 +164,23 @@ void main(){
vec4 lightDir = vLightDir;
lightDir.xyz = normalize(lightDir.xyz);
vec3 viewDir = normalize(vViewDir);
float spotFallOff = 1.0;
#if __VERSION__ >= 110
// allow use of control flow
if(g_LightDirection.w != 0.0){
#endif
spotFallOff = computeSpotFalloff(g_LightDirection, lightVec);
#if __VERSION__ >= 110
if(spotFallOff <= 0.0){
gl_FragColor.rgb = AmbientSum * diffuseColor.rgb;
gl_FragColor.a = alpha;
return;
}
}
#endif
vec2 light = computeLighting(normal, viewDir, lightDir.xyz) * spotFallOff;
vec2 light = computeLighting(normal, viewDir, lightDir.xyz, lightDir.w * spotFallOff, m_Shininess) ;
#ifdef COLORRAMP
diffuseColor.rgb *= texture2D(m_ColorRamp, vec2(light.x, 0.0)).rgb;
specularColor.rgb *= texture2D(m_ColorRamp, vec2(light.y, 0.0)).rgb;

@ -6,34 +6,12 @@ MaterialDef Phong Lighting {
// For better performance
Boolean VertexLighting
// Use more efficent algorithms to improve performance
Boolean LowQuality
// Improve quality at the cost of performance
Boolean HighQuality
// Output alpha from the diffuse map
Boolean UseAlpha
// Alpha threshold for fragment discarding
Float AlphaDiscardThreshold (AlphaTestFallOff)
// Normal map is in BC5/ATI2n/LATC/3Dc compression format
Boolean LATC
// Use the provided ambient, diffuse, and specular colors
Boolean UseMaterialColors
// Activate shading along the tangent, instead of the normal
// Requires tangent data to be available on the model.
Boolean VTangent
// Use minnaert diffuse instead of lambert
Boolean Minnaert
// Use ward specular instead of phong
Boolean WardIso
// Use vertex color as an additional diffuse color.
Boolean UseVertexColor
@ -133,9 +111,48 @@ MaterialDef Phong Lighting {
Int NumberOfBones
Matrix4Array BoneMatrices
//For instancing
Boolean UseInstancing
}
Technique {
LightMode SinglePass
VertexShader GLSL100: Common/MatDefs/Light/SPLighting.vert
FragmentShader GLSL100: Common/MatDefs/Light/SPLighting.frag
WorldParameters {
WorldViewProjectionMatrix
NormalMatrix
WorldViewMatrix
ViewMatrix
CameraPosition
WorldMatrix
ViewProjectionMatrix
}
Defines {
VERTEX_COLOR : UseVertexColor
VERTEX_LIGHTING : VertexLighting
MATERIAL_COLORS : UseMaterialColors
DIFFUSEMAP : DiffuseMap
NORMALMAP : NormalMap
SPECULARMAP : SpecularMap
PARALLAXMAP : ParallaxMap
NORMALMAP_PARALLAX : PackedNormalParallax
STEEP_PARALLAX : SteepParallax
ALPHAMAP : AlphaMap
COLORRAMP : ColorRamp
LIGHTMAP : LightMap
SEPARATE_TEXCOORD : SeparateTexCoord
DISCARD_ALPHA : AlphaDiscardThreshold
USE_REFLECTION : EnvMap
SPHERE_MAP : SphereMap
NUM_BONES : NumberOfBones
INSTANCING : UseInstancing
}
}
Technique {
LightMode MultiPass
@ -154,17 +171,9 @@ MaterialDef Phong Lighting {
}
Defines {
LATC : LATC
VERTEX_COLOR : UseVertexColor
VERTEX_LIGHTING : VertexLighting
ATTENUATION : Attenuation
MATERIAL_COLORS : UseMaterialColors
V_TANGENT : VTangent
MINNAERT : Minnaert
WARDISO : WardIso
LOW_QUALITY : LowQuality
HQ_ATTENUATION : HighQuality
DIFFUSEMAP : DiffuseMap
NORMALMAP : NormalMap
SPECULARMAP : SpecularMap
@ -175,16 +184,16 @@ MaterialDef Phong Lighting {
COLORRAMP : ColorRamp
LIGHTMAP : LightMap
SEPARATE_TEXCOORD : SeparateTexCoord
DISCARD_ALPHA : AlphaDiscardThreshold
USE_REFLECTION : EnvMap
SPHERE_MAP : SphereMap
NUM_BONES : NumberOfBones
INSTANCING : UseInstancing
}
}
Technique PreShadow {
VertexShader GLSL100 : Common/MatDefs/Shadow/PreShadow.vert

@ -1,8 +1,10 @@
#import "Common/ShaderLib/Instancing.glsllib"
#define ATTENUATION
//#define HQ_ATTENUATION
#import "Common/ShaderLib/Skinning.glsllib"
#import "Common/ShaderLib/Lighting.glsllib"
#ifdef VERTEX_LIGHTING
#import "Common/ShaderLib/PhongLighting.glsllib"
#endif
uniform vec4 m_Ambient;
uniform vec4 m_Diffuse;
@ -28,7 +30,6 @@ attribute vec2 inTexCoord;
attribute vec3 inNormal;
varying vec3 lightVec;
//varying vec4 spotVec;
#ifdef VERTEX_COLOR
attribute vec4 inColor;
@ -40,7 +41,6 @@ varying vec3 lightVec;
#ifndef NORMALMAP
varying vec3 vNormal;
#endif
//varying vec3 vPosition;
varying vec3 vViewDir;
varying vec4 vLightDir;
#else
@ -77,57 +77,6 @@ varying vec3 lightVec;
}
#endif
// JME3 lights in world space
void lightComputeDir(in vec3 worldPos, in vec4 color, in vec4 position, out vec4 lightDir){
float posLight = step(0.5, color.w);
vec3 tempVec = position.xyz * sign(posLight - 0.5) - (worldPos * posLight);
lightVec = tempVec;
#ifdef ATTENUATION
float dist = length(tempVec);
lightDir.w = clamp(1.0 - position.w * dist * posLight, 0.0, 1.0);
lightDir.xyz = tempVec / vec3(dist);
#else
lightDir = vec4(normalize(tempVec), 1.0);
#endif
}
#ifdef VERTEX_LIGHTING
float lightComputeDiffuse(in vec3 norm, in vec3 lightdir){
return max(0.0, dot(norm, lightdir));
}
float lightComputeSpecular(in vec3 norm, in vec3 viewdir, in vec3 lightdir, in float shiny){
if (shiny <= 1.0){
return 0.0;
}
#ifndef LOW_QUALITY
vec3 H = (viewdir + lightdir) * vec3(0.5);
return pow(max(dot(H, norm), 0.0), shiny);
#else
return 0.0;
#endif
}
vec2 computeLighting(in vec3 wvPos, in vec3 wvNorm, in vec3 wvViewDir, in vec4 wvLightPos){
vec4 lightDir;
lightComputeDir(wvPos, g_LightColor, wvLightPos, lightDir);
float spotFallOff = 1.0;
if(g_LightDirection.w != 0.0){
vec3 L=normalize(lightVec.xyz);
vec3 spotdir = normalize(g_LightDirection.xyz);
float curAngleCos = dot(-L, spotdir);
float innerAngleCos = floor(g_LightDirection.w) * 0.001;
float outerAngleCos = fract(g_LightDirection.w);
float innerMinusOuter = innerAngleCos - outerAngleCos;
spotFallOff = clamp((curAngleCos - outerAngleCos) / innerMinusOuter, 0.0, 1.0);
}
float diffuseFactor = lightComputeDiffuse(wvNorm, lightDir.xyz);
float specularFactor = lightComputeSpecular(wvNorm, wvViewDir, lightDir.xyz, m_Shininess);
//specularFactor *= step(0.01, diffuseFactor);
return vec2(diffuseFactor, specularFactor) * vec2(lightDir.w)*spotFallOff;
}
#endif
void main(){
vec4 modelSpacePos = vec4(inPosition, 1.0);
vec3 modelSpaceNorm = inNormal;
@ -154,11 +103,6 @@ void main(){
vec3 wvNormal = normalize(TransformNormal(modelSpaceNorm));//normalize(g_NormalMatrix * modelSpaceNorm);
vec3 viewDir = normalize(-wvPosition);
//vec4 lightColor = g_LightColor[gl_InstanceID];
//vec4 lightPos = g_LightPosition[gl_InstanceID];
//vec4 wvLightPos = (g_ViewMatrix * vec4(lightPos.xyz, lightColor.w));
//wvLightPos.w = lightPos.w;
vec4 wvLightPos = (g_ViewMatrix * vec4(g_LightPosition.xyz,clamp(g_LightColor.w,0.0,1.0)));
wvLightPos.w = g_LightPosition.w;
vec4 lightColor = g_LightColor;
@ -166,41 +110,24 @@ void main(){
#if defined(NORMALMAP) && !defined(VERTEX_LIGHTING)
vec3 wvTangent = normalize(TransformNormal(modelSpaceTan));
vec3 wvBinormal = cross(wvNormal, wvTangent);
mat3 tbnMat = mat3(wvTangent, wvBinormal * inTangent.w,wvNormal);
//vPosition = wvPosition * tbnMat;
//vViewDir = viewDir * tbnMat;
vViewDir = -wvPosition * tbnMat;
lightComputeDir(wvPosition, lightColor, wvLightPos, vLightDir);
lightComputeDir(wvPosition, lightColor.w, wvLightPos, vLightDir, lightVec);
vLightDir.xyz = (vLightDir.xyz * tbnMat).xyz;
#elif !defined(VERTEX_LIGHTING)
vNormal = wvNormal;
//vPosition = wvPosition;
vViewDir = viewDir;
lightComputeDir(wvPosition, lightColor, wvLightPos, vLightDir);
#ifdef V_TANGENT
vNormal = normalize(TransformNormal(inTangent.xyz));
vNormal = -cross(cross(vLightDir.xyz, vNormal), vNormal);
#endif
lightComputeDir(wvPosition, lightColor.w, wvLightPos, vLightDir, lightVec);
#endif
//computing spot direction in view space and unpacking spotlight cos
// spotVec = (g_ViewMatrix * vec4(g_LightDirection.xyz, 0.0) );
// spotVec.w = floor(g_LightDirection.w) * 0.001;
// lightVec.w = fract(g_LightDirection.w);
lightColor.w = 1.0;
#ifdef MATERIAL_COLORS
AmbientSum = (m_Ambient * g_AmbientLightColor).rgb;
DiffuseSum = m_Diffuse * lightColor;
DiffuseSum = m_Diffuse * vec4(lightColor.rgb, 1.0);
SpecularSum = (m_Specular * lightColor).rgb;
#else
AmbientSum = vec3(0.2, 0.2, 0.2) * g_AmbientLightColor.rgb; // Default: ambient color is dark gray
DiffuseSum = lightColor;
AmbientSum = g_AmbientLightColor.rgb; // Default: ambient color is dark gray
DiffuseSum = vec4(lightColor.rgb, 1.0);
SpecularSum = vec3(0.0);
#endif
@ -210,7 +137,19 @@ void main(){
#endif
#ifdef VERTEX_LIGHTING
vertexLightValues = computeLighting(wvPosition, wvNormal, viewDir, wvLightPos);
float spotFallOff = 1.0;
vec4 vLightDir;
lightComputeDir(wvPosition, lightColor.w, wvLightPos, vLightDir, lightVec);
#if __VERSION__ >= 110
// allow use of control flow
if(lightColor.w > 1.0){
#endif
spotFallOff = computeSpotFalloff(g_LightDirection, lightVec);
#if __VERSION__ >= 110
}
#endif
vertexLightValues = computeLighting(wvNormal, viewDir, vLightDir.xyz, vLightDir.w * spotFallOff, m_Shininess);
#endif
#ifdef USE_REFLECTION

@ -0,0 +1,218 @@
#import "Common/ShaderLib/Parallax.glsllib"
#import "Common/ShaderLib/Optics.glsllib"
#ifndef VERTEX_LIGHTING
#import "Common/ShaderLib/PhongLighting.glsllib"
#import "Common/ShaderLib/Lighting.glsllib"
#endif
varying vec2 texCoord;
#ifdef SEPARATE_TEXCOORD
varying vec2 texCoord2;
#endif
varying vec3 AmbientSum;
varying vec4 DiffuseSum;
varying vec3 SpecularSum;
#ifndef VERTEX_LIGHTING
uniform mat4 g_ViewMatrix;
uniform vec4 g_LightData[NB_LIGHTS];
varying vec3 vPos;
#else
varying vec3 specularAccum;
varying vec4 diffuseAccum;
#endif
#ifdef DIFFUSEMAP
uniform sampler2D m_DiffuseMap;
#endif
#ifdef SPECULARMAP
uniform sampler2D m_SpecularMap;
#endif
#ifdef PARALLAXMAP
uniform sampler2D m_ParallaxMap;
#endif
#if (defined(PARALLAXMAP) || (defined(NORMALMAP_PARALLAX) && defined(NORMALMAP))) && !defined(VERTEX_LIGHTING)
uniform float m_ParallaxHeight;
#endif
#ifdef LIGHTMAP
uniform sampler2D m_LightMap;
#endif
#ifdef NORMALMAP
uniform sampler2D m_NormalMap;
varying vec3 vTangent;
varying vec3 vBinormal;
#endif
varying vec3 vNormal;
#ifdef ALPHAMAP
uniform sampler2D m_AlphaMap;
#endif
#ifdef COLORRAMP
uniform sampler2D m_ColorRamp;
#endif
uniform float m_AlphaDiscardThreshold;
#ifndef VERTEX_LIGHTING
uniform float m_Shininess;
#ifdef USE_REFLECTION
uniform float m_ReflectionPower;
uniform float m_ReflectionIntensity;
varying vec4 refVec;
uniform ENVMAP m_EnvMap;
#endif
#endif
void main(){
vec2 newTexCoord;
#if (defined(PARALLAXMAP) || (defined(NORMALMAP_PARALLAX) && defined(NORMALMAP))) && !defined(VERTEX_LIGHTING)
#ifdef STEEP_PARALLAX
#ifdef NORMALMAP_PARALLAX
//parallax map is stored in the alpha channel of the normal map
newTexCoord = steepParallaxOffset(m_NormalMap, vViewDir, texCoord, m_ParallaxHeight);
#else
//parallax map is a texture
newTexCoord = steepParallaxOffset(m_ParallaxMap, vViewDir, texCoord, m_ParallaxHeight);
#endif
#else
#ifdef NORMALMAP_PARALLAX
//parallax map is stored in the alpha channel of the normal map
newTexCoord = classicParallaxOffset(m_NormalMap, vViewDir, texCoord, m_ParallaxHeight);
#else
//parallax map is a texture
newTexCoord = classicParallaxOffset(m_ParallaxMap, vViewDir, texCoord, m_ParallaxHeight);
#endif
#endif
#else
newTexCoord = texCoord;
#endif
#ifdef DIFFUSEMAP
vec4 diffuseColor = texture2D(m_DiffuseMap, newTexCoord);
#else
vec4 diffuseColor = vec4(1.0);
#endif
float alpha = DiffuseSum.a * diffuseColor.a;
#ifdef ALPHAMAP
alpha = alpha * texture2D(m_AlphaMap, newTexCoord).r;
#endif
#ifdef DISCARD_ALPHA
if(alpha < m_AlphaDiscardThreshold){
discard;
}
#endif
// ***********************
// Read from textures
// ***********************
#if defined(NORMALMAP) && !defined(VERTEX_LIGHTING)
vec4 normalHeight = texture2D(m_NormalMap, newTexCoord);
//Note the -2.0 and -1.0. We invert the green channel of the normal map,
//as it's complient with normal maps generated with blender.
//see http://hub.jmonkeyengine.org/forum/topic/parallax-mapping-fundamental-bug/#post-256898
//for more explanation.
vec3 normal = normalize((normalHeight.xyz * vec3(2.0,-2.0,2.0) - vec3(1.0,-1.0,1.0)));
#elif !defined(VERTEX_LIGHTING)
vec3 normal = normalize(vNormal);
#endif
#ifdef SPECULARMAP
vec4 specularColor = texture2D(m_SpecularMap, newTexCoord);
#else
vec4 specularColor = vec4(1.0);
#endif
#ifdef LIGHTMAP
vec3 lightMapColor;
#ifdef SEPARATE_TEXCOORD
lightMapColor = texture2D(m_LightMap, texCoord2).rgb;
#else
lightMapColor = texture2D(m_LightMap, texCoord).rgb;
#endif
specularColor.rgb *= lightMapColor;
diffuseColor.rgb *= lightMapColor;
#endif
#ifdef VERTEX_LIGHTING
gl_FragColor.rgb = AmbientSum * diffuseColor.rgb
+diffuseAccum.rgb *diffuseColor.rgb
+specularAccum.rgb * specularColor.rgb;
gl_FragColor.a=1.0;
#else
int i = 0;
gl_FragColor.rgb = AmbientSum * diffuseColor.rgb;
#ifdef USE_REFLECTION
vec4 refColor = Optics_GetEnvColor(m_EnvMap, refVec.xyz);
#endif
#ifdef NORMALMAP
mat3 tbnMat = mat3(normalize(vTangent.xyz) , normalize(vBinormal.xyz) , normalize(vNormal.xyz));
#endif
for( int i = 0;i < NB_LIGHTS; i+=3){
vec4 lightColor = g_LightData[i];
vec4 lightData1 = g_LightData[i+1];
vec4 lightDir;
vec3 lightVec;
lightComputeDir(vPos, lightColor.w, lightData1, lightDir,lightVec);
float spotFallOff = 1.0;
#if __VERSION__ >= 110
// allow use of control flow
if(lightColor.w > 1.0){
#endif
spotFallOff = computeSpotFalloff(g_LightData[i+2], lightVec);
#if __VERSION__ >= 110
}
#endif
#ifdef NORMALMAP
//Normal map -> lighting is computed in tangent space
lightDir.xyz = normalize(lightDir.xyz * tbnMat);
vec3 viewDir = normalize(-vPos.xyz * tbnMat);
#else
//no Normal map -> lighting is computed in view space
lightDir.xyz = normalize(lightDir.xyz);
vec3 viewDir = normalize(-vPos.xyz);
#endif
vec2 light = computeLighting(normal, viewDir, lightDir.xyz, lightDir.w * spotFallOff , m_Shininess);
#ifdef COLORRAMP
diffuseColor.rgb *= texture2D(m_ColorRamp, vec2(light.x, 0.0)).rgb;
specularColor.rgb *= texture2D(m_ColorRamp, vec2(light.y, 0.0)).rgb;
#endif
// Workaround, since it is not possible to modify varying variables
vec4 SpecularSum2 = vec4(SpecularSum, 1.0);
#ifdef USE_REFLECTION
// Interpolate light specularity toward reflection color
// Multiply result by specular map
specularColor = mix(SpecularSum2 * light.y, refColor, refVec.w) * specularColor;
SpecularSum2 = vec4(1.0);
light.y = 1.0;
#endif
gl_FragColor.rgb += DiffuseSum.rgb * lightColor.rgb * diffuseColor.rgb * vec3(light.x) +
SpecularSum2.rgb * specularColor.rgb * vec3(light.y);
}
#endif
gl_FragColor.a = alpha;
}

@ -0,0 +1,172 @@
#import "Common/ShaderLib/Instancing.glsllib"
#import "Common/ShaderLib/Skinning.glsllib"
#import "Common/ShaderLib/Lighting.glsllib"
#ifdef VERTEX_LIGHTING
#import "Common/ShaderLib/PhongLighting.glsllib"
#endif
uniform vec4 m_Ambient;
uniform vec4 m_Diffuse;
uniform vec4 m_Specular;
uniform float m_Shininess;
#if defined(VERTEX_LIGHTING)
uniform vec4 g_LightData[NB_LIGHTS];
#endif
uniform vec4 g_AmbientLightColor;
varying vec2 texCoord;
#ifdef SEPARATE_TEXCOORD
varying vec2 texCoord2;
attribute vec2 inTexCoord2;
#endif
varying vec3 AmbientSum;
varying vec4 DiffuseSum;
varying vec3 SpecularSum;
attribute vec3 inPosition;
attribute vec2 inTexCoord;
attribute vec3 inNormal;
#ifdef VERTEX_COLOR
attribute vec4 inColor;
#endif
#ifndef VERTEX_LIGHTING
varying vec3 vNormal;
varying vec3 vPos;
#ifdef NORMALMAP
attribute vec4 inTangent;
varying vec3 vTangent;
varying vec3 vBinormal;
#endif
#else
varying vec3 specularAccum;
varying vec4 diffuseAccum;
#endif
#ifdef USE_REFLECTION
uniform vec3 g_CameraPosition;
uniform vec3 m_FresnelParams;
varying vec4 refVec;
/**
* Input:
* attribute inPosition
* attribute inNormal
* uniform g_WorldMatrix
* uniform g_CameraPosition
*
* Output:
* varying refVec
*/
void computeRef(in vec4 modelSpacePos){
// vec3 worldPos = (g_WorldMatrix * modelSpacePos).xyz;
vec3 worldPos = TransformWorld(modelSpacePos).xyz;
vec3 I = normalize( g_CameraPosition - worldPos ).xyz;
// vec3 N = normalize( (g_WorldMatrix * vec4(inNormal, 0.0)).xyz );
vec3 N = normalize( TransformWorld(vec4(inNormal, 0.0)).xyz );
refVec.xyz = reflect(I, N);
refVec.w = m_FresnelParams.x + m_FresnelParams.y * pow(1.0 + dot(I, N), m_FresnelParams.z);
}
#endif
void main(){
vec4 modelSpacePos = vec4(inPosition, 1.0);
vec3 modelSpaceNorm = inNormal;
#if defined(NORMALMAP) && !defined(VERTEX_LIGHTING)
vec3 modelSpaceTan = inTangent.xyz;
#endif
#ifdef NUM_BONES
#if defined(NORMALMAP) && !defined(VERTEX_LIGHTING)
Skinning_Compute(modelSpacePos, modelSpaceNorm, modelSpaceTan);
#else
Skinning_Compute(modelSpacePos, modelSpaceNorm);
#endif
#endif
gl_Position = TransformWorldViewProjection(modelSpacePos);
texCoord = inTexCoord;
#ifdef SEPARATE_TEXCOORD
texCoord2 = inTexCoord2;
#endif
vec3 wvPosition = TransformWorldView(modelSpacePos).xyz;
vec3 wvNormal = normalize(TransformNormal(modelSpaceNorm));
vec3 viewDir = normalize(-wvPosition);
#if defined(NORMALMAP) && !defined(VERTEX_LIGHTING)
vTangent = TransformNormal(modelSpaceTan);
vBinormal = cross(wvNormal, vTangent)* inTangent.w;
vNormal = wvNormal;
vPos = wvPosition;
#elif !defined(VERTEX_LIGHTING)
vNormal = wvNormal;
vPos = wvPosition;
#endif
#ifdef MATERIAL_COLORS
AmbientSum = m_Ambient.rgb * g_AmbientLightColor.rgb;
SpecularSum = m_Specular.rgb;
DiffuseSum = m_Diffuse;
#else
AmbientSum = g_AmbientLightColor.rgb;
SpecularSum = vec3(0.0);
DiffuseSum = vec4(1.0);
#endif
#ifdef VERTEX_COLOR
AmbientSum *= inColor.rgb;
DiffuseSum *= inColor;
#endif
#ifdef VERTEX_LIGHTING
int i = 0;
diffuseAccum = vec4(0.0);
specularAccum = vec3(0.0);
vec4 diffuseColor;
vec3 specularColor;
for (int i =0;i < NB_LIGHTS; i+=3){
vec4 lightColor = g_LightData[i];
vec4 lightData1 = g_LightData[i+1];
DiffuseSum = vec4(1.0);
#ifdef MATERIAL_COLORS
diffuseColor = m_Diffuse * vec4(lightColor.rgb, 1.0);
specularColor = m_Specular.rgb * lightColor.rgb;
#else
diffuseColor = vec4(lightColor.rgb, 1.0);
specularColor = vec3(0.0);
#endif
vec4 lightDir;
vec3 lightVec;
lightComputeDir(wvPosition, lightColor.w, lightData1, lightDir, lightVec);
// lightDir = normalize(lightDir);
// lightVec = normalize(lightVec);
float spotFallOff = 1.0;
#if __VERSION__ >= 110
// allow use of control flow
if(lightColor.w > 1.0){
#endif
vec4 lightDirection = g_LightData[i+2];
spotFallOff = computeSpotFalloff(lightDirection, lightVec);
#if __VERSION__ >= 110
}
#endif
vec2 v = computeLighting(wvNormal, viewDir, lightDir.xyz, lightDir.w * spotFallOff, m_Shininess);
diffuseAccum +=v.x * diffuseColor;
specularAccum += v.y * specularColor;
}
#endif
#ifdef USE_REFLECTION
computeRef(modelSpacePos);
#endif
}

@ -1,48 +1,30 @@
#ifndef NUM_LIGHTS
#define NUM_LIGHTS 4
#endif
/*Common function for light calculations*/
uniform mat4 g_ViewMatrix;
uniform vec4 g_LightPosition[NUM_LIGHTS];
uniform vec4 g_g_LightColor[NUM_LIGHTS];
uniform float m_Shininess;
float Lighting_Diffuse(vec3 norm, vec3 lightdir){
return max(0.0, dot(norm, lightdir));
}
float Lighting_Specular(vec3 norm, vec3 viewdir, vec3 lightdir, float shiny){
vec3 refdir = reflect(-lightdir, norm);
return pow(max(dot(refdir, viewdir), 0.0), shiny);
}
void Lighting_Direction(vec3 worldPos, vec4 color, vec4 position, out vec4 lightDir){
float posLight = step(0.5, color.w);
/*
* Computes light direction
* lightType should be 0.0,1.0,2.0, repectively for Directional, point and spot lights.
* Outputs the light direction and the light half vector.
*/
void lightComputeDir(in vec3 worldPos, in float ligthType, in vec4 position, out vec4 lightDir, out vec3 lightVec){
float posLight = step(0.5, ligthType);
vec3 tempVec = position.xyz * sign(posLight - 0.5) - (worldPos * posLight);
lightVec = tempVec;
float dist = length(tempVec);
lightDir.w = clamp(1.0 - position.w * dist * posLight, 0.0, 1.0);
lightDir.xyz = tempVec / dist;
lightDir.xyz = tempVec / vec3(dist);
}
void Lighting_ComputePS(vec3 tanNormal, mat3 tbnMat,
int lightCount, out vec3 outDiffuse, out vec3 outSpecular){
// find tangent view dir & vert pos
vec3 tanViewDir = viewDir * tbnMat;
for (int i = 0; i < lightCount; i++){
// find light dir in tangent space, works for point & directional lights
vec4 wvLightPos = (g_ViewMatrix * vec4(g_LightPosition[i].xyz, g_LightColor[i].w));
wvLightPos.w = g_LightPosition[i].w;
vec4 tanLightDir;
Lighting_Direction(wvPosition, g_LightColor[i], wvLightPos, tanLightDir);
tanLightDir.xyz = tanLightDir.xyz * tbnMat;
vec3 lightScale = g_LightColor[i].rgb * tanLightDir.w;
float specular = Lighting_Specular(tanNormal, tanViewDir, tanLightDir.xyz, m_Shininess);
float diffuse = Lighting_Diffuse(tanNormal, tanLightDir.xyz);
outSpecular += specular * lightScale * step(0.01, diffuse) * g_LightColor[i].rgb;
outDiffuse += diffuse * lightScale * g_LightColor[i].rgb;
}
/*
* Computes the spot falloff for a spotlight
*/
float computeSpotFalloff(in vec4 lightDirection, in vec3 lightVector){
vec3 L=normalize(lightVector);
vec3 spotdir = normalize(lightDirection.xyz);
float curAngleCos = dot(-L, spotdir);
float innerAngleCos = floor(lightDirection.w) * 0.001;
float outerAngleCos = fract(lightDirection.w);
float innerMinusOuter = innerAngleCos - outerAngleCos;
return clamp((curAngleCos - outerAngleCos) / innerMinusOuter, step(lightDirection.w, 0.001), 1.0);
}

@ -0,0 +1,29 @@
/*Standard Phong ligting*/
/*
* Computes diffuse factor
*/
float lightComputeDiffuse(in vec3 norm, in vec3 lightdir){
return max(0.0, dot(norm, lightdir));
}
/*
* Computes specular factor
*/
float lightComputeSpecular(in vec3 norm, in vec3 viewdir, in vec3 lightdir, in float shiny){
vec3 R = reflect(-lightdir, norm);
return pow(max(dot(R, viewdir), 0.0), shiny);
}
/*
* Computes diffuse and specular factors and pack them in a vec2 (x=diffuse, y=specular)
*/
vec2 computeLighting(in vec3 norm, in vec3 viewDir, in vec3 lightDir, in float attenuation, in float shininess){
float diffuseFactor = lightComputeDiffuse(norm, lightDir);
float specularFactor = lightComputeSpecular(norm, viewDir, lightDir, shininess);
if (shininess <= 1.0) {
specularFactor = 0.0; // should be one instruction on most cards ..
}
specularFactor *= diffuseFactor;
return vec2(diffuseFactor, specularFactor) * vec2(attenuation);
}

@ -0,0 +1,255 @@
/*
* Copyright (c) 2009-2012 jMonkeyEngine
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of 'jMonkeyEngine' nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package jme3test.light;
import com.jme3.app.BasicProfilerState;
import com.jme3.app.SimpleApplication;
import com.jme3.font.BitmapText;
import com.jme3.input.KeyInput;
import com.jme3.input.controls.ActionListener;
import com.jme3.input.controls.KeyTrigger;
import com.jme3.light.AmbientLight;
import com.jme3.light.DirectionalLight;
import com.jme3.light.Light;
import com.jme3.light.LightList;
import com.jme3.light.PointLight;
import com.jme3.light.SpotLight;
import com.jme3.material.Material;
import com.jme3.material.TechniqueDef;
import com.jme3.math.ColorRGBA;
import com.jme3.math.FastMath;
import com.jme3.math.Quaternion;
import com.jme3.math.Vector3f;
import com.jme3.renderer.RenderManager;
import com.jme3.renderer.ViewPort;
import com.jme3.scene.Geometry;
import com.jme3.scene.LightNode;
import com.jme3.scene.Node;
import com.jme3.scene.Spatial;
import com.jme3.scene.control.AbstractControl;
import com.jme3.scene.shape.Box;
public class TestManyLightsSingle extends SimpleApplication {
public static void main(String[] args) {
TestManyLightsSingle app = new TestManyLightsSingle();
app.start();
}
TechniqueDef.LightMode lm = TechniqueDef.LightMode.MultiPass;
int lightNum = 6 ;
@Override
public void simpleInitApp() {
renderManager.setPreferredLightMode(lm);
renderManager.setSinglePassLightBatchSize(lightNum);
flyCam.setMoveSpeed(10);
Node scene = (Node) assetManager.loadModel("Scenes/ManyLights/Main.scene");
rootNode.attachChild(scene);
Node n = (Node) rootNode.getChild(0);
LightList lightList = n.getWorldLightList();
Geometry g = (Geometry) n.getChild("Grid-geom-1");
g.getMaterial().setColor("Ambient", new ColorRGBA(0.2f, 0.2f, 0.2f, 1f));
/* A colored lit cube. Needs light source! */
Box boxMesh = new Box(1f, 1f, 1f);
Geometry boxGeo = new Geometry("Colored Box", boxMesh);
Material boxMat = g.getMaterial().clone();
boxMat.setBoolean("UseMaterialColors", true);
boxMat.setColor("Ambient", new ColorRGBA(0.2f, 0.2f, 0.2f, 1f));
boxMat.setColor("Diffuse", ColorRGBA.Blue);
boxGeo.setMaterial(boxMat);
int nb = 0;
for (Light light : lightList) {
nb++;
PointLight p = (PointLight) light;
if (nb >60) {
n.removeLight(light);
} else {
LightNode ln = new LightNode("l", light);
n.attachChild(ln);
ln.setLocalTranslation(p.getPosition());
int rand = FastMath.nextRandomInt(0, 3);
switch (rand) {
case 0:
light.setColor(ColorRGBA.Red);
// ln.addControl(new MoveControl(5f));
break;
case 1:
light.setColor(ColorRGBA.Yellow);
// ln.addControl(new MoveControl(5f));
break;
case 2:
light.setColor(ColorRGBA.Green);
//ln.addControl(new MoveControl(-5f));
break;
case 3:
light.setColor(ColorRGBA.Orange);
//ln.addControl(new MoveControl(-5f));
break;
}
}
Geometry b = boxGeo.clone();
n.attachChild(b);
b.setLocalTranslation(p.getPosition().x, 2, p.getPosition().z);
}
// cam.setLocation(new Vector3f(3.1893547f, 17.977385f, 30.8378f));
// cam.setRotation(new Quaternion(0.14317635f, 0.82302624f, -0.23777823f, 0.49557027f));
cam.setLocation(new Vector3f(-1.8901939f, 29.34097f, 73.07533f));
cam.setRotation(new Quaternion(0.0021000702f, 0.971012f, -0.23886925f, 0.008527749f));
BasicProfilerState profiler = new BasicProfilerState(true);
profiler.setGraphScale(1000f);
// getStateManager().attach(profiler);
// guiNode.setCullHint(CullHint.Always);
flyCam.setDragToRotate(true);
flyCam.setMoveSpeed(50);
inputManager.addListener(new ActionListener() {
public void onAction(String name, boolean isPressed, float tpf) {
if (name.equals("toggle") && isPressed) {
if (lm == TechniqueDef.LightMode.SinglePass) {
lm = TechniqueDef.LightMode.MultiPass;
} else {
lm = TechniqueDef.LightMode.SinglePass;
}
renderManager.setPreferredLightMode(lm);
}
if (name.equals("lightsUp") && isPressed) {
lightNum++;
renderManager.setSinglePassLightBatchSize(lightNum);
helloText.setText("nb lights per batch : " + lightNum);
}
if (name.equals("lightsDown") && isPressed) {
lightNum--;
renderManager.setSinglePassLightBatchSize(lightNum);
helloText.setText("nb lights per batch : " + lightNum);
}
}
}, "toggle", "lightsUp", "lightsDown");
inputManager.addMapping("toggle", new KeyTrigger(KeyInput.KEY_SPACE));
inputManager.addMapping("lightsUp", new KeyTrigger(KeyInput.KEY_UP));
inputManager.addMapping("lightsDown", new KeyTrigger(KeyInput.KEY_DOWN));
SpotLight spot = new SpotLight();
spot.setDirection(new Vector3f(-1f, -1f, -1f).normalizeLocal());
spot.setColor(ColorRGBA.Blue.mult(5));
spot.setSpotOuterAngle(FastMath.DEG_TO_RAD * 20);
spot.setSpotInnerAngle(FastMath.DEG_TO_RAD * 5);
spot.setPosition(new Vector3f(10, 10, 20));
rootNode.addLight(spot);
DirectionalLight dl = new DirectionalLight();
dl.setDirection(new Vector3f(-1, -1, 1));
rootNode.addLight(dl);
AmbientLight al = new AmbientLight();
al.setColor(new ColorRGBA(0.2f, 0.2f, 0.2f, 1f));
rootNode.addLight(al);
/**
* Write text on the screen (HUD)
*/
guiNode.detachAllChildren();
guiFont = assetManager.loadFont("Interface/Fonts/Default.fnt");
helloText = new BitmapText(guiFont, false);
helloText.setSize(guiFont.getCharSet().getRenderedSize());
helloText.setText("nb lights per batch : " + lightNum);
helloText.setLocalTranslation(300, helloText.getLineHeight(), 0);
guiNode.attachChild(helloText);
}
BitmapText helloText;
long time;
long nbFrames;
long startTime = 0;
@Override
public void simpleUpdate(float tpf) {
// if (nbFrames == 4000) {
// startTime = System.nanoTime();
// }
// if (nbFrames > 4000) {
// time = System.nanoTime();
// float average = ((float) time - (float) startTime) / ((float) nbFrames - 4000f);
// helloText.setText("Average = " + average);
// }
// nbFrames++;
}
class MoveControl extends AbstractControl {
float direction;
Vector3f origPos = new Vector3f();
public MoveControl(float direction) {
this.direction = direction;
}
@Override
public void setSpatial(Spatial spatial) {
super.setSpatial(spatial); //To change body of generated methods, choose Tools | Templates.
origPos.set(spatial.getLocalTranslation());
}
float time = 0;
@Override
protected void controlUpdate(float tpf) {
time += tpf;
spatial.setLocalTranslation(origPos.x + FastMath.cos(time) * direction, origPos.y, origPos.z + FastMath.sin(time) * direction);
}
@Override
protected void controlRender(RenderManager rm, ViewPort vp) {
}
}
}

@ -802,7 +802,7 @@ public class LwjglGL1Renderer implements GL1Renderer {
TextureUtil.uploadTexture(img, target, i, 0, tdc);
}
} else {*/
TextureUtil.uploadTexture(ctxCaps, img, target, 0, 0, false);
TextureUtil.uploadTexture(caps, img, target, 0, 0, false);
//}
img.clearUpdateNeeded();
@ -853,7 +853,7 @@ public class LwjglGL1Renderer implements GL1Renderer {
public void modifyTexture(Texture tex, Image pixels, int x, int y) {
setTexture(0, tex);
TextureUtil.uploadSubTexture(ctxCaps, pixels, convertTextureType(tex.getType()), 0, x, y, false);
TextureUtil.uploadSubTexture(caps, pixels, convertTextureType(tex.getType()), 0, x, y, false);
}
private void clearTextureUnits() {

@ -57,7 +57,9 @@ import com.jme3.util.BufferUtils;
import com.jme3.util.ListMap;
import com.jme3.util.NativeObjectManager;
import java.nio.*;
import java.util.ArrayList;
import java.util.EnumSet;
import java.util.HashSet;
import java.util.List;
import java.util.logging.Level;
import java.util.logging.Logger;
@ -70,7 +72,6 @@ import static org.lwjgl.opengl.ARBInstancedArrays.*;
import static org.lwjgl.opengl.ARBMultisample.*;
import static org.lwjgl.opengl.ARBTextureMultisample.*;
import static org.lwjgl.opengl.ARBVertexArrayObject.*;
import org.lwjgl.opengl.ContextCapabilities;
import static org.lwjgl.opengl.EXTFramebufferBlit.*;
import static org.lwjgl.opengl.EXTFramebufferMultisample.*;
import static org.lwjgl.opengl.EXTFramebufferObject.*;
@ -84,7 +85,7 @@ import static org.lwjgl.opengl.GL13.*;
import static org.lwjgl.opengl.GL14.*;
import static org.lwjgl.opengl.GL15.*;
import static org.lwjgl.opengl.GL20.*;
import org.lwjgl.opengl.GLContext;
import org.lwjgl.opengl.GL30;
//import static org.lwjgl.opengl.GL21.*;
//import static org.lwjgl.opengl.GL30.*;
@ -101,10 +102,7 @@ public class LwjglRenderer implements Renderer {
private final RenderContext context = new RenderContext();
private final NativeObjectManager objManager = new NativeObjectManager();
private final EnumSet<Caps> caps = EnumSet.noneOf(Caps.class);
// current state
private Shader boundShader;
private int initialDrawBuf, initialReadBuf;
private int glslVer;
private int vertexTextureUnits;
private int fragTextureUnits;
private int vertexUniforms;
@ -120,13 +118,12 @@ public class LwjglRenderer implements Renderer {
private int maxTriCount;
private int maxColorTexSamples;
private int maxDepthTexSamples;
private FrameBuffer lastFb = null;
private FrameBuffer mainFbOverride = null;
private final Statistics statistics = new Statistics();
private int vpX, vpY, vpW, vpH;
private int clipX, clipY, clipW, clipH;
private boolean linearizeSrgbImages;
private ContextCapabilities ctxCaps;
private HashSet<String> extensions;
public LwjglRenderer() {
}
@ -153,18 +150,67 @@ public class LwjglRenderer implements Renderer {
return caps;
}
@SuppressWarnings("fallthrough")
public void initialize() {
ctxCaps = GLContext.getCapabilities();
if (ctxCaps.OpenGL20) {
private static HashSet<String> loadExtensions(String extensions) {
HashSet<String> extensionSet = new HashSet<String>(64);
for (String extension : extensions.split(" ")) {
extensionSet.add(extension);
}
return extensionSet;
}
private static int extractVersion(String prefixStr, String versionStr) {
if (versionStr != null) {
int spaceIdx = versionStr.indexOf(" ", prefixStr.length());
if (spaceIdx >= 1) {
versionStr = versionStr.substring(prefixStr.length(), spaceIdx).trim();
} else {
versionStr = versionStr.substring(prefixStr.length()).trim();
}
// Some device have ":" at the end of the version.
versionStr = versionStr.replaceAll("\\:", "");
// Pivot on first point.
int firstPoint = versionStr.indexOf(".");
// Remove everything after second point.
int secondPoint = versionStr.indexOf(".", firstPoint + 1);
if (secondPoint != -1) {
versionStr = versionStr.substring(0, secondPoint);
}
String majorVerStr = versionStr.substring(0, firstPoint);
String minorVerStr = versionStr.substring(firstPoint + 1);
if (minorVerStr.endsWith("0") && minorVerStr.length() > 1) {
minorVerStr = minorVerStr.substring(0, minorVerStr.length() - 1);
}
int majorVer = Integer.parseInt(majorVerStr);
int minorVer = Integer.parseInt(minorVerStr);
return majorVer * 100 + minorVer * 10;
} else {
return -1;
}
}
private boolean hasExtension(String extensionName) {
return extensions.contains(extensionName);
}
private void loadCapabilities() {
int oglVer = extractVersion("", glGetString(GL_VERSION));
if (oglVer >= 200) {
caps.add(Caps.OpenGL20);
if (ctxCaps.OpenGL21) {
if (oglVer >= 210) {
caps.add(Caps.OpenGL21);
if (ctxCaps.OpenGL30) {
if (oglVer >= 300) {
caps.add(Caps.OpenGL30);
if (ctxCaps.OpenGL31) {
if (oglVer >= 310) {
caps.add(Caps.OpenGL31);
if (ctxCaps.OpenGL32) {
if (oglVer >= 320) {
caps.add(Caps.OpenGL32);
}
}
@ -172,49 +218,15 @@ public class LwjglRenderer implements Renderer {
}
}
//workaround, always assume we support GLSL100
//some cards just don't report this correctly
caps.add(Caps.GLSL100);
String versionStr = null;
if (ctxCaps.OpenGL20) {
versionStr = glGetString(GL_SHADING_LANGUAGE_VERSION);
}
if (versionStr == null || versionStr.equals("")) {
glslVer = -1;
throw new UnsupportedOperationException("GLSL and OpenGL2 is "
+ "required for the LWJGL "
+ "renderer!");
}
// Fix issue in TestRenderToMemory when GL_FRONT is the main
// buffer being used.
initialDrawBuf = glGetInteger(GL_DRAW_BUFFER);
initialReadBuf = glGetInteger(GL_READ_BUFFER);
// XXX: This has to be GL_BACK for canvas on Mac
// Since initialDrawBuf is GL_FRONT for pbuffer, gotta
// change this value later on ...
// initialDrawBuf = GL_BACK;
// initialReadBuf = GL_BACK;
int spaceIdx = versionStr.indexOf(" ");
if (spaceIdx >= 1) {
versionStr = versionStr.substring(0, spaceIdx);
}
float version = Float.parseFloat(versionStr);
glslVer = (int) (version * 100);
int glslVer = extractVersion("", glGetString(GL_SHADING_LANGUAGE_VERSION));
switch (glslVer) {
default:
if (glslVer < 400) {
break;
}
// so that future OpenGL revisions wont break jme3
// fall through intentional
// so that future OpenGL revisions wont break jme3
// fall through intentional
case 400:
case 330:
case 150:
@ -232,10 +244,27 @@ public class LwjglRenderer implements Renderer {
break;
}
if (!caps.contains(Caps.GLSL100)) {
logger.log(Level.WARNING, "Force-adding GLSL100 support, since OpenGL2 is supported.");
caps.add(Caps.GLSL100);
}
// Workaround, always assume we support GLSL100.
// Some cards just don't report this correctly.
caps.add(Caps.GLSL100);
extensions = loadExtensions(glGetString(GL_EXTENSIONS));
}
@SuppressWarnings("fallthrough")
public void initialize() {
loadCapabilities();
// Fix issue in TestRenderToMemory when GL_FRONT is the main
// buffer being used.
context.initialDrawBuf = glGetInteger(GL_DRAW_BUFFER);
context.initialReadBuf = glGetInteger(GL_READ_BUFFER);
// XXX: This has to be GL_BACK for canvas on Mac
// Since initialDrawBuf is GL_FRONT for pbuffer, gotta
// change this value later on ...
// initialDrawBuf = GL_BACK;
// initialReadBuf = GL_BACK;
glGetInteger(GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS, intBuf16);
vertexTextureUnits = intBuf16.get(0);
@ -280,44 +309,41 @@ public class LwjglRenderer implements Renderer {
maxCubeTexSize = intBuf16.get(0);
logger.log(Level.FINER, "Maximum CubeMap Resolution: {0}", maxCubeTexSize);
if (ctxCaps.GL_ARB_color_buffer_float) {
// ctxCaps = GLContext.getCapabilities();
if (hasExtension("GL_ARB_color_buffer_float") &&
hasExtension("GL_ARB_half_float_pixel")) {
// XXX: Require both 16 and 32 bit float support for FloatColorBuffer.
if (ctxCaps.GL_ARB_half_float_pixel) {
caps.add(Caps.FloatColorBuffer);
}
caps.add(Caps.FloatColorBuffer);
}
if (ctxCaps.GL_ARB_depth_buffer_float) {
if (hasExtension("GL_ARB_depth_buffer_float")) {
caps.add(Caps.FloatDepthBuffer);
}
if (ctxCaps.OpenGL30) {
if (caps.contains(Caps.OpenGL30)) {
caps.add(Caps.PackedDepthStencilBuffer);
}
if (ctxCaps.GL_ARB_draw_instanced && ctxCaps.GL_ARB_instanced_arrays) {
if (hasExtension("GL_ARB_draw_instanced") &&
hasExtension("GL_ARB_instanced_arrays")) {
caps.add(Caps.MeshInstancing);
}
if (ctxCaps.GL_ARB_fragment_program) {
caps.add(Caps.ARBprogram);
}
if (ctxCaps.GL_ARB_texture_buffer_object) {
if (hasExtension("GL_ARB_texture_buffer_object")) {
caps.add(Caps.TextureBuffer);
}
if (ctxCaps.GL_ARB_texture_float) {
if (ctxCaps.GL_ARB_half_float_pixel) {
caps.add(Caps.FloatTexture);
}
if (hasExtension("GL_ARB_texture_float") &&
hasExtension("GL_ARB_half_float_pixel")) {
caps.add(Caps.FloatTexture);
}
if (ctxCaps.GL_ARB_vertex_array_object) {
if (hasExtension("GL_ARB_vertex_array_object") || caps.contains(Caps.OpenGL30)) {
caps.add(Caps.VertexBufferArray);
}
if (ctxCaps.GL_ARB_texture_non_power_of_two) {
if (hasExtension("GL_ARB_texture_non_power_of_two") || caps.contains(Caps.OpenGL30)) {
caps.add(Caps.NonPowerOfTwoTextures);
} else {
logger.log(Level.WARNING, "Your graphics card does not "
@ -325,30 +351,34 @@ public class LwjglRenderer implements Renderer {
+ "Some features might not work.");
}
boolean latc = ctxCaps.GL_EXT_texture_compression_latc;
if (latc) {
if (hasExtension("GL_EXT_texture_compression_latc")) {
caps.add(Caps.TextureCompressionLATC);
}
if (ctxCaps.GL_EXT_packed_float || ctxCaps.OpenGL30) {
if (hasExtension("GL_EXT_packed_float") || caps.contains(Caps.OpenGL30)) {
// This format is part of the OGL3 specification
caps.add(Caps.PackedFloatColorBuffer);
if (ctxCaps.GL_ARB_half_float_pixel) {
if (hasExtension("GL_ARB_half_float_pixel")) {
// because textures are usually uploaded as RGB16F
// need half-float pixel
caps.add(Caps.PackedFloatTexture);
}
}
if (ctxCaps.GL_EXT_texture_array || ctxCaps.OpenGL30) {
if (hasExtension("GL_EXT_texture_array") || caps.contains(Caps.OpenGL30)) {
caps.add(Caps.TextureArray);
}
if (ctxCaps.GL_EXT_texture_shared_exponent || ctxCaps.OpenGL30) {
if (hasExtension("GL_EXT_texture_shared_exponent") || caps.contains(Caps.OpenGL30)) {
caps.add(Caps.SharedExponentTexture);
}
if (ctxCaps.GL_EXT_framebuffer_object) {
if (hasExtension("GL_EXT_texture_filter_anisotropic")) {
caps.add(Caps.TextureFilterAnisotropic);
}
if (hasExtension("GL_EXT_framebuffer_object")) {
caps.add(Caps.FrameBuffer);
glGetInteger(GL_MAX_RENDERBUFFER_SIZE_EXT, intBuf16);
@ -359,7 +389,7 @@ public class LwjglRenderer implements Renderer {
maxFBOAttachs = intBuf16.get(0);
logger.log(Level.FINER, "FBO Max renderbuffers: {0}", maxFBOAttachs);
if (ctxCaps.GL_EXT_framebuffer_multisample) {
if (hasExtension("GL_EXT_framebuffer_multisample")) {
caps.add(Caps.FrameBufferMultisample);
glGetInteger(GL_MAX_SAMPLES_EXT, intBuf16);
@ -367,7 +397,7 @@ public class LwjglRenderer implements Renderer {
logger.log(Level.FINER, "FBO Max Samples: {0}", maxFBOSamples);
}
if (ctxCaps.GL_ARB_texture_multisample) {
if (hasExtension("GL_ARB_texture_multisample")) {
caps.add(Caps.TextureMultisample);
glGetInteger(GL_MAX_COLOR_TEXTURE_SAMPLES, intBuf16);
@ -387,7 +417,7 @@ public class LwjglRenderer implements Renderer {
}
}
if (ctxCaps.GL_ARB_multisample) {
if (hasExtension("GL_ARB_multisample")) {
glGetInteger(GL_SAMPLE_BUFFERS_ARB, intBuf16);
boolean available = intBuf16.get(0) != 0;
glGetInteger(GL_SAMPLES_ARB, intBuf16);
@ -401,7 +431,8 @@ public class LwjglRenderer implements Renderer {
}
// Supports sRGB pipeline.
if ( (ctxCaps.GL_ARB_framebuffer_sRGB && ctxCaps.GL_EXT_texture_sRGB ) || ctxCaps.OpenGL30 ) {
if ( (hasExtension("GL_ARB_framebuffer_sRGB") && hasExtension("GL_EXT_texture_sRGB"))
|| caps.contains(Caps.OpenGL30) ) {
caps.add(Caps.Srgb);
}
@ -410,11 +441,8 @@ public class LwjglRenderer implements Renderer {
public void invalidateState() {
context.reset();
boundShader = null;
lastFb = null;
initialDrawBuf = glGetInteger(GL_DRAW_BUFFER);
initialReadBuf = glGetInteger(GL_READ_BUFFER);
context.initialDrawBuf = glGetInteger(GL_DRAW_BUFFER);
context.initialReadBuf = glGetInteger(GL_READ_BUFFER);
}
public void resetGLObjects() {
@ -479,7 +507,7 @@ public class LwjglRenderer implements Renderer {
}
public void setAlphaToCoverage(boolean value) {
if (ctxCaps.GL_ARB_multisample) {
if (caps.contains(Caps.Multisample)) {
if (value) {
glEnable(GL_SAMPLE_ALPHA_TO_COVERAGE_ARB);
} else {
@ -822,7 +850,7 @@ public class LwjglRenderer implements Renderer {
if (context.boundShaderProgram != shaderId) {
glUseProgram(shaderId);
statistics.onShaderUse(shader, true);
boundShader = shader;
context.boundShader = shader;
context.boundShaderProgram = shaderId;
} else {
statistics.onShaderUse(shader, false);
@ -1081,12 +1109,12 @@ public class LwjglRenderer implements Renderer {
glAttachShader(id, source.getId());
}
if (ctxCaps.GL_EXT_gpu_shader4) {
if (caps.contains(Caps.OpenGL30)) {
// Check if GLSL version is 1.5 for shader
glBindFragDataLocationEXT(id, 0, "outFragColor");
GL30.glBindFragDataLocation(id, 0, "outFragColor");
// For MRT
for (int i = 0; i < maxMRTFBOAttachs; i++) {
glBindFragDataLocationEXT(id, i, "outFragData[" + i + "]");
GL30.glBindFragDataLocation(id, i, "outFragData[" + i + "]");
}
}
@ -1191,7 +1219,7 @@ public class LwjglRenderer implements Renderer {
}
public void copyFrameBuffer(FrameBuffer src, FrameBuffer dst, boolean copyDepth) {
if (ctxCaps.GL_EXT_framebuffer_blit) {
if (caps.contains(Caps.FrameBufferBlit)) {
int srcX0 = 0;
int srcY0 = 0;
int srcX1;
@ -1292,11 +1320,11 @@ public class LwjglRenderer implements Renderer {
int attachment = convertAttachmentSlot(rb.getSlot());
int type = glGetFramebufferAttachmentParameterEXT(GL_DRAW_FRAMEBUFFER_EXT,
int type = glGetFramebufferAttachmentParameteriEXT(GL_DRAW_FRAMEBUFFER_EXT,
attachment,
GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE_EXT);
int rbName = glGetFramebufferAttachmentParameterEXT(GL_DRAW_FRAMEBUFFER_EXT,
int rbName = glGetFramebufferAttachmentParameteriEXT(GL_DRAW_FRAMEBUFFER_EXT,
attachment,
GL_FRAMEBUFFER_ATTACHMENT_OBJECT_NAME_EXT);
@ -1397,9 +1425,9 @@ public class LwjglRenderer implements Renderer {
+ ":" + fb.getHeight() + " is not supported.");
}
TextureUtil.GLImageFormat glFmt = TextureUtil.getImageFormatWithError(ctxCaps, rb.getFormat(), fb.isSrgb());
TextureUtil.GLImageFormat glFmt = TextureUtil.getImageFormatWithError(caps, rb.getFormat(), fb.isSrgb());
if (fb.getSamples() > 1 && ctxCaps.GL_EXT_framebuffer_multisample) {
if (fb.getSamples() > 1 && caps.contains(Caps.FrameBufferMultisample)) {
int samples = fb.getSamples();
if (maxFBOSamples < samples) {
samples = maxFBOSamples;
@ -1503,7 +1531,7 @@ public class LwjglRenderer implements Renderer {
if (fb.getSamples() <= 1) {
throw new IllegalArgumentException("Framebuffer must be multisampled");
}
if (!ctxCaps.GL_ARB_texture_multisample) {
if (!caps.contains(Caps.TextureMultisample)) {
throw new RendererException("Multisampled textures are not supported");
}
@ -1525,7 +1553,7 @@ public class LwjglRenderer implements Renderer {
}
public void setFrameBuffer(FrameBuffer fb) {
if (!ctxCaps.GL_EXT_framebuffer_object) {
if (!caps.contains(Caps.FrameBuffer)) {
throw new RendererException("Framebuffer objects are not supported" +
" by the video hardware");
}
@ -1534,16 +1562,16 @@ public class LwjglRenderer implements Renderer {
fb = mainFbOverride;
}
if (lastFb == fb) {
if (context.boundFB == fb) {
if (fb == null || !fb.isUpdateNeeded()) {
return;
}
}
// generate mipmaps for last FB if needed
if (lastFb != null) {
for (int i = 0; i < lastFb.getNumColorBuffers(); i++) {
RenderBuffer rb = lastFb.getColorBuffer(i);
if (context.boundFB != null) {
for (int i = 0; i < context.boundFB.getNumColorBuffers(); i++) {
RenderBuffer rb = context.boundFB.getColorBuffer(i);
Texture tex = rb.getTexture();
if (tex != null
&& tex.getMinFilter().usesMipMapLevels()) {
@ -1567,15 +1595,15 @@ public class LwjglRenderer implements Renderer {
}
// select back buffer
if (context.boundDrawBuf != -1) {
glDrawBuffer(initialDrawBuf);
glDrawBuffer(context.initialDrawBuf);
context.boundDrawBuf = -1;
}
if (context.boundReadBuf != -1) {
glReadBuffer(initialReadBuf);
glReadBuffer(context.initialReadBuf);
context.boundReadBuf = -1;
}
lastFb = null;
context.boundFB = null;
} else {
if (fb.getNumColorBuffers() == 0 && fb.getDepthBuffer() == null) {
throw new IllegalArgumentException("The framebuffer: " + fb
@ -1644,7 +1672,7 @@ public class LwjglRenderer implements Renderer {
assert fb.getId() >= 0;
assert context.boundFBO == fb.getId();
lastFb = fb;
context.boundFB = fb;
try {
checkFrameBufferError();
@ -1707,7 +1735,7 @@ public class LwjglRenderer implements Renderer {
|* Textures *|
\*********************************************************************/
private int convertTextureType(Texture.Type type, int samples, int face) {
if (samples > 1 && !ctxCaps.GL_ARB_texture_multisample) {
if (samples > 1 && !caps.contains(Caps.TextureMultisample)) {
throw new RendererException("Multisample textures are not supported" +
" by the video hardware.");
}
@ -1751,22 +1779,37 @@ public class LwjglRenderer implements Renderer {
}
}
private int convertMinFilter(Texture.MinFilter filter) {
switch (filter) {
case Trilinear:
return GL_LINEAR_MIPMAP_LINEAR;
case BilinearNearestMipMap:
return GL_LINEAR_MIPMAP_NEAREST;
case NearestLinearMipMap:
return GL_NEAREST_MIPMAP_LINEAR;
case NearestNearestMipMap:
return GL_NEAREST_MIPMAP_NEAREST;
case BilinearNoMipMaps:
return GL_LINEAR;
case NearestNoMipMaps:
return GL_NEAREST;
default:
throw new UnsupportedOperationException("Unknown min filter: " + filter);
private int convertMinFilter(Texture.MinFilter filter, boolean haveMips) {
if (haveMips){
switch (filter) {
case Trilinear:
return GL_LINEAR_MIPMAP_LINEAR;
case BilinearNearestMipMap:
return GL_LINEAR_MIPMAP_NEAREST;
case NearestLinearMipMap:
return GL_NEAREST_MIPMAP_LINEAR;
case NearestNearestMipMap:
return GL_NEAREST_MIPMAP_NEAREST;
case BilinearNoMipMaps:
return GL_LINEAR;
case NearestNoMipMaps:
return GL_NEAREST;
default:
throw new UnsupportedOperationException("Unknown min filter: " + filter);
}
} else {
switch (filter) {
case Trilinear:
case BilinearNearestMipMap:
case BilinearNoMipMaps:
return GL_LINEAR;
case NearestLinearMipMap:
case NearestNearestMipMap:
case NearestNoMipMaps:
return GL_NEAREST;
default:
throw new UnsupportedOperationException("Unknown min filter: " + filter);
}
}
}
@ -1792,14 +1835,20 @@ public class LwjglRenderer implements Renderer {
Image image = tex.getImage();
int target = convertTextureType(tex.getType(), image != null ? image.getMultiSamples() : 1, -1);
boolean haveMips = true;
if (image != null) {
haveMips = image.isGeneratedMipmapsRequired() || image.hasMipmaps();
}
// filter things
int minFilter = convertMinFilter(tex.getMinFilter());
int minFilter = convertMinFilter(tex.getMinFilter(), haveMips);
int magFilter = convertMagFilter(tex.getMagFilter());
glTexParameteri(target, GL_TEXTURE_MIN_FILTER, minFilter);
glTexParameteri(target, GL_TEXTURE_MAG_FILTER, magFilter);
if (tex.getAnisotropicFilter() > 1) {
if (ctxCaps.GL_EXT_texture_filter_anisotropic) {
if (caps.contains(Caps.TextureFilterAnisotropic)) {
glTexParameterf(target,
GL_TEXTURE_MAX_ANISOTROPY_EXT,
tex.getAnisotropicFilter());
@ -1881,7 +1930,7 @@ public class LwjglRenderer implements Renderer {
// Image does not have mipmaps, but they are required.
// Generate from base level.
if (!ctxCaps.OpenGL30) {
if (!caps.contains(Caps.OpenGL30)) {
glTexParameteri(target, GL_GENERATE_MIPMAP, GL_TRUE);
img.setMipmapsGenerated(true);
} else {
@ -1908,7 +1957,7 @@ public class LwjglRenderer implements Renderer {
}
// Yes, some OpenGL2 cards (GeForce 5) still dont support NPOT.
if (!ctxCaps.GL_ARB_texture_non_power_of_two && img.isNPOT()) {
if (!caps.contains(Caps.NonPowerOfTwoTextures) && img.isNPOT()) {
if (img.getData(0) == null) {
throw new RendererException("non-power-of-2 framebuffer textures are not supported by the video hardware");
} else {
@ -1917,7 +1966,7 @@ public class LwjglRenderer implements Renderer {
}
// Check if graphics card doesn't support multisample textures
if (!ctxCaps.GL_ARB_texture_multisample) {
if (!caps.contains(Caps.TextureMultisample)) {
if (img.getMultiSamples() > 1) {
throw new RendererException("Multisample textures not supported by graphics hardware");
}
@ -1928,6 +1977,9 @@ public class LwjglRenderer implements Renderer {
if (img.getWidth() > maxCubeTexSize || img.getHeight() > maxCubeTexSize) {
throw new RendererException("Cannot upload cubemap " + img + ". The maximum supported cubemap resolution is " + maxCubeTexSize);
}
if (img.getWidth() != img.getHeight()) {
throw new RendererException("Cubemaps must have square dimensions");
}
} else {
if (img.getWidth() > maxTexSize || img.getHeight() > maxTexSize) {
throw new RendererException("Cannot upload texture " + img + ". The maximum supported texture resolution is " + maxTexSize);
@ -1942,7 +1994,7 @@ public class LwjglRenderer implements Renderer {
return;
}
for (int i = 0; i < 6; i++) {
TextureUtil.uploadTexture(ctxCaps, img, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, i, 0, linearizeSrgbImages);
TextureUtil.uploadTexture(caps, img, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, i, 0, linearizeSrgbImages);
}
} else if (target == GL_TEXTURE_2D_ARRAY_EXT) {
if (!caps.contains(Caps.TextureArray)) {
@ -1952,22 +2004,22 @@ public class LwjglRenderer implements Renderer {
List<ByteBuffer> data = img.getData();
// -1 index specifies prepare data for 2D Array
TextureUtil.uploadTexture(ctxCaps, img, target, -1, 0, linearizeSrgbImages);
TextureUtil.uploadTexture(caps, img, target, -1, 0, linearizeSrgbImages);
for (int i = 0; i < data.size(); i++) {
// upload each slice of 2D array in turn
// this time with the appropriate index
TextureUtil.uploadTexture(ctxCaps, img, target, i, 0, linearizeSrgbImages);
TextureUtil.uploadTexture(caps, img, target, i, 0, linearizeSrgbImages);
}
} else {
TextureUtil.uploadTexture(ctxCaps, img, target, 0, 0, linearizeSrgbImages);
TextureUtil.uploadTexture(caps, img, target, 0, 0, linearizeSrgbImages);
}
if (img.getMultiSamples() != imageSamples) {
img.setMultiSamples(imageSamples);
}
if (ctxCaps.OpenGL30) {
if (caps.contains(Caps.OpenGL30)) {
if (!img.hasMipmaps() && img.isGeneratedMipmapsRequired() && img.getData() != null) {
// XXX: Required for ATI
glEnable(target);
@ -2018,7 +2070,7 @@ public class LwjglRenderer implements Renderer {
public void modifyTexture(Texture tex, Image pixels, int x, int y) {
setTexture(0, tex);
TextureUtil.uploadSubTexture(ctxCaps, pixels, convertTextureType(tex.getType(), pixels.getMultiSamples(), -1), 0, x, y, linearizeSrgbImages);
TextureUtil.uploadSubTexture(caps, pixels, convertTextureType(tex.getType(), pixels.getMultiSamples(), -1), 0, x, y, linearizeSrgbImages);
}
public void clearTextureUnits() {
@ -2213,8 +2265,9 @@ public class LwjglRenderer implements Renderer {
}
int programId = context.boundShaderProgram;
if (programId > 0) {
Attribute attrib = boundShader.getAttribute(vb.getBufferType());
Attribute attrib = context.boundShader.getAttribute(vb.getBufferType());
int loc = attrib.getLocation();
if (loc == -1) {
return; // not defined
@ -2236,8 +2289,7 @@ public class LwjglRenderer implements Renderer {
}
if (vb.isInstanced()) {
if (!ctxCaps.GL_ARB_instanced_arrays
|| !ctxCaps.GL_ARB_draw_instanced) {
if (!caps.contains(Caps.MeshInstancing)) {
throw new RendererException("Instancing is required, "
+ "but not supported by the "
+ "graphics hardware");

@ -32,11 +32,13 @@
package com.jme3.renderer.lwjgl;
import com.jme3.renderer.Caps;
import com.jme3.renderer.RendererException;
import com.jme3.texture.Image;
import com.jme3.texture.Image.Format;
import com.jme3.texture.image.ColorSpace;
import java.nio.ByteBuffer;
import java.util.EnumSet;
import java.util.logging.Level;
import java.util.logging.Logger;
import static org.lwjgl.opengl.ARBDepthBufferFloat.*;
@ -55,7 +57,6 @@ import static org.lwjgl.opengl.GL11.*;
import static org.lwjgl.opengl.GL12.*;
import static org.lwjgl.opengl.GL13.*;
import static org.lwjgl.opengl.GL14.*;
import static org.lwjgl.opengl.GL20.*;
class TextureUtil {
@ -157,18 +158,18 @@ class TextureUtil {
private static final GLImageFormat sRGB_DXT3 = new GLImageFormat(GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT, GL_RGBA, GL_UNSIGNED_BYTE, true);
private static final GLImageFormat sRGB_DXT5 = new GLImageFormat(GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT, GL_RGBA, GL_UNSIGNED_BYTE, true);
public static GLImageFormat getImageFormat(ContextCapabilities caps, Format fmt, boolean isSrgb){
public static GLImageFormat getImageFormat(EnumSet<Caps> caps, Format fmt, boolean isSrgb){
switch (fmt){
case DXT1:
case DXT1A:
case DXT3:
case DXT5:
if (!caps.GL_EXT_texture_compression_s3tc) {
if (!caps.contains(Caps.TextureCompressionS3TC)) {
return null;
}
break;
case Depth24Stencil8:
if (!caps.OpenGL30 && !caps.GL_EXT_packed_depth_stencil){
if (!caps.contains(Caps.PackedDepthStencilBuffer)){
return null;
}
break;
@ -179,30 +180,30 @@ class TextureUtil {
case RGB32F:
case RGBA16F:
case RGBA32F:
if (!caps.OpenGL30 && !caps.GL_ARB_texture_float){
if (!caps.contains(Caps.FloatTexture)){
return null;
}
break;
case Depth32F:
if (!caps.OpenGL30 && !caps.GL_NV_depth_buffer_float){
if (!caps.contains(Caps.FloatDepthBuffer)){
return null;
}
break;
case LATC:
case LTC:
if (!caps.GL_EXT_texture_compression_latc){
if (!caps.contains(Caps.TextureCompressionLATC)){
return null;
}
break;
case RGB9E5:
case RGB16F_to_RGB9E5:
if (!caps.OpenGL30 && !caps.GL_EXT_texture_shared_exponent){
if (!caps.contains(Caps.SharedExponentTexture)){
return null;
}
break;
case RGB111110F:
case RGB16F_to_RGB111110F:
if (!caps.OpenGL30 && !caps.GL_EXT_packed_float){
if (!caps.contains(Caps.PackedFloatTexture)){
return null;
}
break;
@ -214,7 +215,7 @@ class TextureUtil {
}
}
public static GLImageFormat getImageFormatWithError(ContextCapabilities caps, Format fmt, boolean isSrgb) {
public static GLImageFormat getImageFormatWithError(EnumSet<Caps> caps, Format fmt, boolean isSrgb) {
GLImageFormat glFmt = getImageFormat(caps, fmt, isSrgb);
if (glFmt == null) {
throw new RendererException("Image format '" + fmt + "' is unsupported by the video hardware.");
@ -254,7 +255,7 @@ class TextureUtil {
}
}
public static void uploadTexture(ContextCapabilities caps,
public static void uploadTexture(EnumSet<Caps> caps,
Image image,
int target,
int index,
@ -412,7 +413,7 @@ class TextureUtil {
* @param y the y position where to put the image in the texture
*/
public static void uploadSubTexture(
ContextCapabilities caps,
EnumSet<Caps> caps,
Image image,
int target,
int index,

@ -0,0 +1,615 @@
#import "Common/ShaderLib/PhongLighting.glsllib"
#import "Common/ShaderLib/Lighting.glsllib"
uniform float m_Shininess;
varying vec4 AmbientSum;
varying vec4 DiffuseSum;
varying vec4 SpecularSum;
uniform mat4 g_ViewMatrix;
uniform vec4 g_LightData[NB_LIGHTS];
varying vec3 vTangent;
varying vec3 vBinormal;
varying vec3 vPos;
varying vec3 vNormal;
varying vec2 texCoord;
#ifdef DIFFUSEMAP
uniform sampler2D m_DiffuseMap;
#endif
#ifdef DIFFUSEMAP_1
uniform sampler2D m_DiffuseMap_1;
#endif
#ifdef DIFFUSEMAP_2
uniform sampler2D m_DiffuseMap_2;
#endif
#ifdef DIFFUSEMAP_3
uniform sampler2D m_DiffuseMap_3;
#endif
#ifdef DIFFUSEMAP_4
uniform sampler2D m_DiffuseMap_4;
#endif
#ifdef DIFFUSEMAP_5
uniform sampler2D m_DiffuseMap_5;
#endif
#ifdef DIFFUSEMAP_6
uniform sampler2D m_DiffuseMap_6;
#endif
#ifdef DIFFUSEMAP_7
uniform sampler2D m_DiffuseMap_7;
#endif
#ifdef DIFFUSEMAP_8
uniform sampler2D m_DiffuseMap_8;
#endif
#ifdef DIFFUSEMAP_9
uniform sampler2D m_DiffuseMap_9;
#endif
#ifdef DIFFUSEMAP_10
uniform sampler2D m_DiffuseMap_10;
#endif
#ifdef DIFFUSEMAP_11
uniform sampler2D m_DiffuseMap_11;
#endif
#ifdef DIFFUSEMAP_0_SCALE
uniform float m_DiffuseMap_0_scale;
#endif
#ifdef DIFFUSEMAP_1_SCALE
uniform float m_DiffuseMap_1_scale;
#endif
#ifdef DIFFUSEMAP_2_SCALE
uniform float m_DiffuseMap_2_scale;
#endif
#ifdef DIFFUSEMAP_3_SCALE
uniform float m_DiffuseMap_3_scale;
#endif
#ifdef DIFFUSEMAP_4_SCALE
uniform float m_DiffuseMap_4_scale;
#endif
#ifdef DIFFUSEMAP_5_SCALE
uniform float m_DiffuseMap_5_scale;
#endif
#ifdef DIFFUSEMAP_6_SCALE
uniform float m_DiffuseMap_6_scale;
#endif
#ifdef DIFFUSEMAP_7_SCALE
uniform float m_DiffuseMap_7_scale;
#endif
#ifdef DIFFUSEMAP_8_SCALE
uniform float m_DiffuseMap_8_scale;
#endif
#ifdef DIFFUSEMAP_9_SCALE
uniform float m_DiffuseMap_9_scale;
#endif
#ifdef DIFFUSEMAP_10_SCALE
uniform float m_DiffuseMap_10_scale;
#endif
#ifdef DIFFUSEMAP_11_SCALE
uniform float m_DiffuseMap_11_scale;
#endif
#ifdef ALPHAMAP
uniform sampler2D m_AlphaMap;
#endif
#ifdef ALPHAMAP_1
uniform sampler2D m_AlphaMap_1;
#endif
#ifdef ALPHAMAP_2
uniform sampler2D m_AlphaMap_2;
#endif
#ifdef NORMALMAP
uniform sampler2D m_NormalMap;
#endif
#ifdef NORMALMAP_1
uniform sampler2D m_NormalMap_1;
#endif
#ifdef NORMALMAP_2
uniform sampler2D m_NormalMap_2;
#endif
#ifdef NORMALMAP_3
uniform sampler2D m_NormalMap_3;
#endif
#ifdef NORMALMAP_4
uniform sampler2D m_NormalMap_4;
#endif
#ifdef NORMALMAP_5
uniform sampler2D m_NormalMap_5;
#endif
#ifdef NORMALMAP_6
uniform sampler2D m_NormalMap_6;
#endif
#ifdef NORMALMAP_7
uniform sampler2D m_NormalMap_7;
#endif
#ifdef NORMALMAP_8
uniform sampler2D m_NormalMap_8;
#endif
#ifdef NORMALMAP_9
uniform sampler2D m_NormalMap_9;
#endif
#ifdef NORMALMAP_10
uniform sampler2D m_NormalMap_10;
#endif
#ifdef NORMALMAP_11
uniform sampler2D m_NormalMap_11;
#endif
#ifdef TRI_PLANAR_MAPPING
varying vec4 wVertex;
varying vec3 wNormal;
#endif
#ifdef ALPHAMAP
vec4 calculateDiffuseBlend(in vec2 texCoord) {
vec4 alphaBlend = texture2D( m_AlphaMap, texCoord.xy );
#ifdef ALPHAMAP_1
vec4 alphaBlend1 = texture2D( m_AlphaMap_1, texCoord.xy );
#endif
#ifdef ALPHAMAP_2
vec4 alphaBlend2 = texture2D( m_AlphaMap_2, texCoord.xy );
#endif
vec4 diffuseColor = texture2D(m_DiffuseMap, texCoord * m_DiffuseMap_0_scale);
diffuseColor *= alphaBlend.r;
#ifdef DIFFUSEMAP_1
vec4 diffuseColor1 = texture2D(m_DiffuseMap_1, texCoord * m_DiffuseMap_1_scale);
diffuseColor = mix( diffuseColor, diffuseColor1, alphaBlend.g );
#endif
#ifdef DIFFUSEMAP_2
vec4 diffuseColor2 = texture2D(m_DiffuseMap_2, texCoord * m_DiffuseMap_2_scale);
diffuseColor = mix( diffuseColor, diffuseColor2, alphaBlend.b );
#endif
#ifdef DIFFUSEMAP_3
vec4 diffuseColor3 = texture2D(m_DiffuseMap_3, texCoord * m_DiffuseMap_3_scale);
diffuseColor = mix( diffuseColor, diffuseColor3, alphaBlend.a );
#endif
#ifdef ALPHAMAP_1
#ifdef DIFFUSEMAP_4
vec4 diffuseColor4 = texture2D(m_DiffuseMap_4, texCoord * m_DiffuseMap_4_scale);
diffuseColor = mix( diffuseColor, diffuseColor4, alphaBlend1.r );
#endif
#ifdef DIFFUSEMAP_5
vec4 diffuseColor5 = texture2D(m_DiffuseMap_5, texCoord * m_DiffuseMap_5_scale);
diffuseColor = mix( diffuseColor, diffuseColor5, alphaBlend1.g );
#endif
#ifdef DIFFUSEMAP_6
vec4 diffuseColor6 = texture2D(m_DiffuseMap_6, texCoord * m_DiffuseMap_6_scale);
diffuseColor = mix( diffuseColor, diffuseColor6, alphaBlend1.b );
#endif
#ifdef DIFFUSEMAP_7
vec4 diffuseColor7 = texture2D(m_DiffuseMap_7, texCoord * m_DiffuseMap_7_scale);
diffuseColor = mix( diffuseColor, diffuseColor7, alphaBlend1.a );
#endif
#endif
#ifdef ALPHAMAP_2
#ifdef DIFFUSEMAP_8
vec4 diffuseColor8 = texture2D(m_DiffuseMap_8, texCoord * m_DiffuseMap_8_scale);
diffuseColor = mix( diffuseColor, diffuseColor8, alphaBlend2.r );
#endif
#ifdef DIFFUSEMAP_9
vec4 diffuseColor9 = texture2D(m_DiffuseMap_9, texCoord * m_DiffuseMap_9_scale);
diffuseColor = mix( diffuseColor, diffuseColor9, alphaBlend2.g );
#endif
#ifdef DIFFUSEMAP_10
vec4 diffuseColor10 = texture2D(m_DiffuseMap_10, texCoord * m_DiffuseMap_10_scale);
diffuseColor = mix( diffuseColor, diffuseColor10, alphaBlend2.b );
#endif
#ifdef DIFFUSEMAP_11
vec4 diffuseColor11 = texture2D(m_DiffuseMap_11, texCoord * m_DiffuseMap_11_scale);
diffuseColor = mix( diffuseColor, diffuseColor11, alphaBlend2.a );
#endif
#endif
return diffuseColor;
}
vec3 calculateNormal(in vec2 texCoord) {
vec3 normal = vec3(0,0,1);
vec3 n = vec3(0,0,0);
vec4 alphaBlend = texture2D( m_AlphaMap, texCoord.xy );
#ifdef ALPHAMAP_1
vec4 alphaBlend1 = texture2D( m_AlphaMap_1, texCoord.xy );
#endif
#ifdef ALPHAMAP_2
vec4 alphaBlend2 = texture2D( m_AlphaMap_2, texCoord.xy );
#endif
#ifdef NORMALMAP
n = texture2D(m_NormalMap, texCoord * m_DiffuseMap_0_scale).xyz;
normal += n * alphaBlend.r;
#else
normal += vec3(0.5,0.5,1) * alphaBlend.r;
#endif
#ifdef NORMALMAP_1
n = texture2D(m_NormalMap_1, texCoord * m_DiffuseMap_1_scale).xyz;
normal += n * alphaBlend.g;
#else
normal += vec3(0.5,0.5,1) * alphaBlend.g;
#endif
#ifdef NORMALMAP_2
n = texture2D(m_NormalMap_2, texCoord * m_DiffuseMap_2_scale).xyz;
normal += n * alphaBlend.b;
#else
normal += vec3(0.5,0.5,1) * alphaBlend.b;
#endif
#ifdef NORMALMAP_3
n = texture2D(m_NormalMap_3, texCoord * m_DiffuseMap_3_scale).xyz;
normal += n * alphaBlend.a;
#else
normal += vec3(0.5,0.5,1) * alphaBlend.a;
#endif
#ifdef ALPHAMAP_1
#ifdef NORMALMAP_4
n = texture2D(m_NormalMap_4, texCoord * m_DiffuseMap_4_scale).xyz;
normal += n * alphaBlend1.r;
#endif
#ifdef NORMALMAP_5
n = texture2D(m_NormalMap_5, texCoord * m_DiffuseMap_5_scale).xyz;
normal += n * alphaBlend1.g;
#endif
#ifdef NORMALMAP_6
n = texture2D(m_NormalMap_6, texCoord * m_DiffuseMap_6_scale).xyz;
normal += n * alphaBlend1.b;
#endif
#ifdef NORMALMAP_7
n = texture2D(m_NormalMap_7, texCoord * m_DiffuseMap_7_scale).xyz;
normal += n * alphaBlend1.a;
#endif
#endif
#ifdef ALPHAMAP_2
#ifdef NORMALMAP_8
n = texture2D(m_NormalMap_8, texCoord * m_DiffuseMap_8_scale).xyz;
normal += n * alphaBlend2.r;
#endif
#ifdef NORMALMAP_9
n = texture2D(m_NormalMap_9, texCoord * m_DiffuseMap_9_scale);
normal += n * alphaBlend2.g;
#endif
#ifdef NORMALMAP_10
n = texture2D(m_NormalMap_10, texCoord * m_DiffuseMap_10_scale);
normal += n * alphaBlend2.b;
#endif
#ifdef NORMALMAP_11
n = texture2D(m_NormalMap_11, texCoord * m_DiffuseMap_11_scale);
normal += n * alphaBlend2.a;
#endif
#endif
normal = (normal.xyz * vec3(2.0) - vec3(1.0));
return normalize(normal);
}
#ifdef TRI_PLANAR_MAPPING
vec4 getTriPlanarBlend(in vec4 coords, in vec3 blending, in sampler2D map, in float scale) {
vec4 col1 = texture2D( map, coords.yz * scale);
vec4 col2 = texture2D( map, coords.xz * scale);
vec4 col3 = texture2D( map, coords.xy * scale);
// blend the results of the 3 planar projections.
vec4 tex = col1 * blending.x + col2 * blending.y + col3 * blending.z;
return tex;
}
vec4 calculateTriPlanarDiffuseBlend(in vec3 wNorm, in vec4 wVert, in vec2 texCoord) {
// tri-planar texture bending factor for this fragment's normal
vec3 blending = abs( wNorm );
blending = (blending -0.2) * 0.7;
blending = normalize(max(blending, 0.00001)); // Force weights to sum to 1.0 (very important!)
float b = (blending.x + blending.y + blending.z);
blending /= vec3(b, b, b);
// texture coords
vec4 coords = wVert;
// blend the results of the 3 planar projections.
vec4 tex0 = getTriPlanarBlend(coords, blending, m_DiffuseMap, m_DiffuseMap_0_scale);
#ifdef DIFFUSEMAP_1
// blend the results of the 3 planar projections.
vec4 tex1 = getTriPlanarBlend(coords, blending, m_DiffuseMap_1, m_DiffuseMap_1_scale);
#endif
#ifdef DIFFUSEMAP_2
// blend the results of the 3 planar projections.
vec4 tex2 = getTriPlanarBlend(coords, blending, m_DiffuseMap_2, m_DiffuseMap_2_scale);
#endif
#ifdef DIFFUSEMAP_3
// blend the results of the 3 planar projections.
vec4 tex3 = getTriPlanarBlend(coords, blending, m_DiffuseMap_3, m_DiffuseMap_3_scale);
#endif
#ifdef DIFFUSEMAP_4
// blend the results of the 3 planar projections.
vec4 tex4 = getTriPlanarBlend(coords, blending, m_DiffuseMap_4, m_DiffuseMap_4_scale);
#endif
#ifdef DIFFUSEMAP_5
// blend the results of the 3 planar projections.
vec4 tex5 = getTriPlanarBlend(coords, blending, m_DiffuseMap_5, m_DiffuseMap_5_scale);
#endif
#ifdef DIFFUSEMAP_6
// blend the results of the 3 planar projections.
vec4 tex6 = getTriPlanarBlend(coords, blending, m_DiffuseMap_6, m_DiffuseMap_6_scale);
#endif
#ifdef DIFFUSEMAP_7
// blend the results of the 3 planar projections.
vec4 tex7 = getTriPlanarBlend(coords, blending, m_DiffuseMap_7, m_DiffuseMap_7_scale);
#endif
#ifdef DIFFUSEMAP_8
// blend the results of the 3 planar projections.
vec4 tex8 = getTriPlanarBlend(coords, blending, m_DiffuseMap_8, m_DiffuseMap_8_scale);
#endif
#ifdef DIFFUSEMAP_9
// blend the results of the 3 planar projections.
vec4 tex9 = getTriPlanarBlend(coords, blending, m_DiffuseMap_9, m_DiffuseMap_9_scale);
#endif
#ifdef DIFFUSEMAP_10
// blend the results of the 3 planar projections.
vec4 tex10 = getTriPlanarBlend(coords, blending, m_DiffuseMap_10, m_DiffuseMap_10_scale);
#endif
#ifdef DIFFUSEMAP_11
// blend the results of the 3 planar projections.
vec4 tex11 = getTriPlanarBlend(coords, blending, m_DiffuseMap_11, m_DiffuseMap_11_scale);
#endif
vec4 alphaBlend = texture2D( m_AlphaMap, texCoord.xy );
#ifdef ALPHAMAP_1
vec4 alphaBlend1 = texture2D( m_AlphaMap_1, texCoord.xy );
#endif
#ifdef ALPHAMAP_2
vec4 alphaBlend2 = texture2D( m_AlphaMap_2, texCoord.xy );
#endif
vec4 diffuseColor = tex0 * alphaBlend.r;
#ifdef DIFFUSEMAP_1
diffuseColor = mix( diffuseColor, tex1, alphaBlend.g );
#endif
#ifdef DIFFUSEMAP_2
diffuseColor = mix( diffuseColor, tex2, alphaBlend.b );
#endif
#ifdef DIFFUSEMAP_3
diffuseColor = mix( diffuseColor, tex3, alphaBlend.a );
#endif
#ifdef ALPHAMAP_1
#ifdef DIFFUSEMAP_4
diffuseColor = mix( diffuseColor, tex4, alphaBlend1.r );
#endif
#ifdef DIFFUSEMAP_5
diffuseColor = mix( diffuseColor, tex5, alphaBlend1.g );
#endif
#ifdef DIFFUSEMAP_6
diffuseColor = mix( diffuseColor, tex6, alphaBlend1.b );
#endif
#ifdef DIFFUSEMAP_7
diffuseColor = mix( diffuseColor, tex7, alphaBlend1.a );
#endif
#endif
#ifdef ALPHAMAP_2
#ifdef DIFFUSEMAP_8
diffuseColor = mix( diffuseColor, tex8, alphaBlend2.r );
#endif
#ifdef DIFFUSEMAP_9
diffuseColor = mix( diffuseColor, tex9, alphaBlend2.g );
#endif
#ifdef DIFFUSEMAP_10
diffuseColor = mix( diffuseColor, tex10, alphaBlend2.b );
#endif
#ifdef DIFFUSEMAP_11
diffuseColor = mix( diffuseColor, tex11, alphaBlend2.a );
#endif
#endif
return diffuseColor;
}
vec3 calculateNormalTriPlanar(in vec3 wNorm, in vec4 wVert,in vec2 texCoord) {
// tri-planar texture bending factor for this fragment's world-space normal
vec3 blending = abs( wNorm );
blending = (blending -0.2) * 0.7;
blending = normalize(max(blending, 0.00001)); // Force weights to sum to 1.0 (very important!)
float b = (blending.x + blending.y + blending.z);
blending /= vec3(b, b, b);
// texture coords
vec4 coords = wVert;
vec4 alphaBlend = texture2D( m_AlphaMap, texCoord.xy );
#ifdef ALPHAMAP_1
vec4 alphaBlend1 = texture2D( m_AlphaMap_1, texCoord.xy );
#endif
#ifdef ALPHAMAP_2
vec4 alphaBlend2 = texture2D( m_AlphaMap_2, texCoord.xy );
#endif
vec3 normal = vec3(0,0,1);
vec3 n = vec3(0,0,0);
#ifdef NORMALMAP
n = getTriPlanarBlend(coords, blending, m_NormalMap, m_DiffuseMap_0_scale).xyz;
normal += n * alphaBlend.r;
#else
normal += vec3(0.5,0.5,1) * alphaBlend.r;
#endif
#ifdef NORMALMAP_1
n = getTriPlanarBlend(coords, blending, m_NormalMap_1, m_DiffuseMap_1_scale).xyz;
normal += n * alphaBlend.g;
#else
normal += vec3(0.5,0.5,1) * alphaBlend.g;
#endif
#ifdef NORMALMAP_2
n = getTriPlanarBlend(coords, blending, m_NormalMap_2, m_DiffuseMap_2_scale).xyz;
normal += n * alphaBlend.b;
#else
normal += vec3(0.5,0.5,1) * alphaBlend.b;
#endif
#ifdef NORMALMAP_3
n = getTriPlanarBlend(coords, blending, m_NormalMap_3, m_DiffuseMap_3_scale).xyz;
normal += n * alphaBlend.a;
#else
normal += vec3(0.5,0.5,1) * alphaBlend.a;
#endif
#ifdef ALPHAMAP_1
#ifdef NORMALMAP_4
n = getTriPlanarBlend(coords, blending, m_NormalMap_4, m_DiffuseMap_4_scale).xyz;
normal += n * alphaBlend1.r;
#else
normal += vec3(0.5,0.5,1) * alphaBlend.r;
#endif
#ifdef NORMALMAP_5
n = getTriPlanarBlend(coords, blending, m_NormalMap_5, m_DiffuseMap_5_scale).xyz;
normal += n * alphaBlend1.g;
#else
normal += vec3(0.5,0.5,1) * alphaBlend.g;
#endif
#ifdef NORMALMAP_6
n = getTriPlanarBlend(coords, blending, m_NormalMap_6, m_DiffuseMap_6_scale).xyz;
normal += n * alphaBlend1.b;
#else
normal += vec3(0.5,0.5,1) * alphaBlend.b;
#endif
#ifdef NORMALMAP_7
n = getTriPlanarBlend(coords, blending, m_NormalMap_7, m_DiffuseMap_7_scale).xyz;
normal += n * alphaBlend1.a;
#else
normal += vec3(0.5,0.5,1) * alphaBlend.a;
#endif
#endif
#ifdef ALPHAMAP_2
#ifdef NORMALMAP_8
n = getTriPlanarBlend(coords, blending, m_NormalMap_8, m_DiffuseMap_8_scale).xyz;
normal += n * alphaBlend2.r;
#else
normal += vec3(0.5,0.5,1) * alphaBlend.r;
#endif
#ifdef NORMALMAP_9
n = getTriPlanarBlend(coords, blending, m_NormalMap_9, m_DiffuseMap_9_scale).xyz;
normal += n * alphaBlend2.g;
#else
normal += vec3(0.5,0.5,1) * alphaBlend.g;
#endif
#ifdef NORMALMAP_10
n = getTriPlanarBlend(coords, blending, m_NormalMap_10, m_DiffuseMap_10_scale).xyz;
normal += n * alphaBlend2.b;
#else
normal += vec3(0.5,0.5,1) * alphaBlend.b;
#endif
#ifdef NORMALMAP_11
n = getTriPlanarBlend(coords, blending, m_NormalMap_11, m_DiffuseMap_11_scale).xyz;
normal += n * alphaBlend2.a;
#else
normal += vec3(0.5,0.5,1) * alphaBlend.a;
#endif
#endif
normal = (normal.xyz * vec3(2.0) - vec3(1.0));
return normalize(normal);
}
#endif
#endif
void main(){
//----------------------
// diffuse calculations
//----------------------
#ifdef DIFFUSEMAP
#ifdef ALPHAMAP
#ifdef TRI_PLANAR_MAPPING
vec4 diffuseColor = calculateTriPlanarDiffuseBlend(wNormal, wVertex, texCoord);
#else
vec4 diffuseColor = calculateDiffuseBlend(texCoord);
#endif
#else
vec4 diffuseColor = texture2D(m_DiffuseMap, texCoord);
#endif
#else
vec4 diffuseColor = vec4(1.0);
#endif
//---------------------
// normal calculations
//---------------------
#if defined(NORMALMAP) || defined(NORMALMAP_1) || defined(NORMALMAP_2) || defined(NORMALMAP_3) || defined(NORMALMAP_4) || defined(NORMALMAP_5) || defined(NORMALMAP_6) || defined(NORMALMAP_7) || defined(NORMALMAP_8) || defined(NORMALMAP_9) || defined(NORMALMAP_10) || defined(NORMALMAP_11)
#ifdef TRI_PLANAR_MAPPING
vec3 normal = calculateNormalTriPlanar(wNormal, wVertex, texCoord);
#else
vec3 normal = calculateNormal(texCoord);
#endif
mat3 tbnMat = mat3(normalize(vTangent.xyz) , normalize(vBinormal.xyz) , normalize(vNormal.xyz));
#else
vec3 normal = vNormal;
#endif
//-----------------------
// lighting calculations
//-----------------------
gl_FragColor = AmbientSum * diffuseColor;
for( int i = 0;i < NB_LIGHTS; i+=3){
vec4 lightColor = g_LightData[i];
vec4 lightData1 = g_LightData[i+1];
vec4 lightDir;
vec3 lightVec;
lightComputeDir(vPos, lightColor.w, lightData1, lightDir, lightVec);
float spotFallOff = 1.0;
#if __VERSION__ >= 110
// allow use of control flow
if(lightColor.w > 1.0){
#endif
spotFallOff = computeSpotFalloff(g_LightData[i+2], lightVec);
#if __VERSION__ >= 110
}
#endif
#ifdef NORMALMAP
//Normal map -> lighting is computed in tangent space
lightDir.xyz = normalize(lightDir.xyz * tbnMat);
vec3 viewDir = normalize(-vPos.xyz * tbnMat);
#else
//no Normal map -> lighting is computed in view space
lightDir.xyz = normalize(lightDir.xyz);
vec3 viewDir = normalize(-vPos.xyz);
#endif
vec2 light = computeLighting(normal, viewDir, lightDir.xyz, lightDir.w * spotFallOff, m_Shininess);
gl_FragColor.rgb += DiffuseSum.rgb * lightColor.rgb * diffuseColor.rgb * vec3(light.x) +
SpecularSum.rgb * vec3(light.y);
}
}

@ -0,0 +1,66 @@
uniform mat4 g_WorldViewProjectionMatrix;
uniform mat4 g_WorldViewMatrix;
uniform mat3 g_NormalMatrix;
uniform mat4 g_ViewMatrix;
uniform vec4 g_AmbientLightColor;
attribute vec3 inPosition;
attribute vec3 inNormal;
attribute vec2 inTexCoord;
attribute vec4 inTangent;
varying vec3 vNormal;
varying vec2 texCoord;
varying vec3 vPos;
varying vec3 vTangent;
varying vec3 vBinormal;
varying vec4 AmbientSum;
varying vec4 DiffuseSum;
varying vec4 SpecularSum;
#ifdef TRI_PLANAR_MAPPING
varying vec4 wVertex;
varying vec3 wNormal;
#endif
void main(){
vec4 pos = vec4(inPosition, 1.0);
gl_Position = g_WorldViewProjectionMatrix * pos;
#ifdef TERRAIN_GRID
texCoord = inTexCoord * 2.0;
#else
texCoord = inTexCoord;
#endif
vec3 wvPosition = (g_WorldViewMatrix * pos).xyz;
vec3 wvNormal = normalize(g_NormalMatrix * inNormal);
//--------------------------
// specific to normal maps:
//--------------------------
#if defined(NORMALMAP) || defined(NORMALMAP_1) || defined(NORMALMAP_2) || defined(NORMALMAP_3) || defined(NORMALMAP_4) || defined(NORMALMAP_5) || defined(NORMALMAP_6) || defined(NORMALMAP_7) || defined(NORMALMAP_8) || defined(NORMALMAP_9) || defined(NORMALMAP_10) || defined(NORMALMAP_11)
vTangent = g_NormalMatrix * inTangent.xyz;
vBinormal = cross(wvNormal, vTangent)* inTangent.w;
#endif
//-------------------------
// general to all lighting
//-------------------------
vNormal = wvNormal;
vPos = wvPosition;
AmbientSum = g_AmbientLightColor;
DiffuseSum = vec4(1.0);
SpecularSum = vec4(0.0);
#ifdef TRI_PLANAR_MAPPING
wVertex = vec4(inPosition,0.0);
wNormal = inNormal;
#endif
}

@ -1,3 +1,5 @@
#import "Common/ShaderLib/PhongLighting.glsllib"
#import "Common/ShaderLib/Lighting.glsllib"
uniform float m_Shininess;
uniform vec4 g_LightDirection;
@ -145,54 +147,6 @@ varying vec3 lightVec;
varying vec3 wNormal;
#endif
float tangDot(in vec3 v1, in vec3 v2){
float d = dot(v1,v2);
#ifdef V_TANGENT
d = 1.0 - d*d;
return step(0.0, d) * sqrt(d);
#else
return d;
#endif
}
float lightComputeDiffuse(in vec3 norm, in vec3 lightdir, in vec3 viewdir){
return max(0.0, dot(norm, lightdir));
}
float lightComputeSpecular(in vec3 norm, in vec3 viewdir, in vec3 lightdir, in float shiny){
#ifdef WARDISO
// Isotropic Ward
vec3 halfVec = normalize(viewdir + lightdir);
float NdotH = max(0.001, tangDot(norm, halfVec));
float NdotV = max(0.001, tangDot(norm, viewdir));
float NdotL = max(0.001, tangDot(norm, lightdir));
float a = tan(acos(NdotH));
float p = max(shiny/128.0, 0.001);
return NdotL * (1.0 / (4.0*3.14159265*p*p)) * (exp(-(a*a)/(p*p)) / (sqrt(NdotV * NdotL)));
#else
// Standard Phong
vec3 R = reflect(-lightdir, norm);
return pow(max(tangDot(R, viewdir), 0.0), shiny);
#endif
}
vec2 computeLighting(in vec3 wvPos, in vec3 wvNorm, in vec3 wvViewDir, in vec3 wvLightDir){
float diffuseFactor = lightComputeDiffuse(wvNorm, wvLightDir, wvViewDir);
float specularFactor = lightComputeSpecular(wvNorm, wvViewDir, wvLightDir, m_Shininess);
if (m_Shininess <= 1.0) {
specularFactor = 0.0; // should be one instruction on most cards ..
}
float att = vLightDir.w;
return vec2(diffuseFactor, specularFactor) * vec2(att);
}
#ifdef ALPHAMAP
vec4 calculateDiffuseBlend(in vec2 texCoord) {
@ -648,7 +602,7 @@ void main(){
vec4 lightDir = vLightDir;
lightDir.xyz = normalize(lightDir.xyz);
vec2 light = computeLighting(vPosition, normal, vViewDir.xyz, lightDir.xyz)*spotFallOff;
vec2 light = computeLighting(normal, vViewDir.xyz, lightDir.xyz,lightDir.w*spotFallOff,m_Shininess);
vec4 specularColor = vec4(1.0);

@ -163,6 +163,70 @@ MaterialDef Terrain Lighting {
}
}
Technique {
LightMode SinglePass
VertexShader GLSL100: Common/MatDefs/Terrain/SPTerrainLighting.vert
FragmentShader GLSL100: Common/MatDefs/Terrain/SPTerrainLighting.frag
WorldParameters {
WorldViewProjectionMatrix
NormalMatrix
WorldViewMatrix
ViewMatrix
}
Defines {
TRI_PLANAR_MAPPING : useTriPlanarMapping
TERRAIN_GRID : isTerrainGrid
WARDISO : WardIso
DIFFUSEMAP : DiffuseMap
DIFFUSEMAP_1 : DiffuseMap_1
DIFFUSEMAP_2 : DiffuseMap_2
DIFFUSEMAP_3 : DiffuseMap_3
DIFFUSEMAP_4 : DiffuseMap_4
DIFFUSEMAP_5 : DiffuseMap_5
DIFFUSEMAP_6 : DiffuseMap_6
DIFFUSEMAP_7 : DiffuseMap_7
DIFFUSEMAP_8 : DiffuseMap_8
DIFFUSEMAP_9 : DiffuseMap_9
DIFFUSEMAP_10 : DiffuseMap_10
DIFFUSEMAP_11 : DiffuseMap_11
NORMALMAP : NormalMap
NORMALMAP_1 : NormalMap_1
NORMALMAP_2 : NormalMap_2
NORMALMAP_3 : NormalMap_3
NORMALMAP_4 : NormalMap_4
NORMALMAP_5 : NormalMap_5
NORMALMAP_6 : NormalMap_6
NORMALMAP_7 : NormalMap_7
NORMALMAP_8 : NormalMap_8
NORMALMAP_9 : NormalMap_9
NORMALMAP_10 : NormalMap_10
NORMALMAP_11 : NormalMap_11
SPECULARMAP : SpecularMap
ALPHAMAP : AlphaMap
ALPHAMAP_1 : AlphaMap_1
ALPHAMAP_2 : AlphaMap_2
DIFFUSEMAP_0_SCALE : DiffuseMap_0_scale
DIFFUSEMAP_1_SCALE : DiffuseMap_1_scale
DIFFUSEMAP_2_SCALE : DiffuseMap_2_scale
DIFFUSEMAP_3_SCALE : DiffuseMap_3_scale
DIFFUSEMAP_4_SCALE : DiffuseMap_4_scale
DIFFUSEMAP_5_SCALE : DiffuseMap_5_scale
DIFFUSEMAP_6_SCALE : DiffuseMap_6_scale
DIFFUSEMAP_7_SCALE : DiffuseMap_7_scale
DIFFUSEMAP_8_SCALE : DiffuseMap_8_scale
DIFFUSEMAP_9_SCALE : DiffuseMap_9_scale
DIFFUSEMAP_10_SCALE : DiffuseMap_10_scale
DIFFUSEMAP_11_SCALE : DiffuseMap_11_scale
}
}
Technique PreShadow {
VertexShader GLSL100 : Common/MatDefs/Shadow/PreShadow.vert

@ -1,3 +1,5 @@
#import "Common/ShaderLib/Lighting.glsllib"
uniform mat4 g_WorldViewProjectionMatrix;
uniform mat4 g_WorldViewMatrix;
uniform mat3 g_NormalMatrix;
@ -34,16 +36,6 @@ varying vec4 SpecularSum;
varying vec3 wNormal;
#endif
// JME3 lights in world space
void lightComputeDir(in vec3 worldPos, in vec4 color, in vec4 position, out vec4 lightDir){
float posLight = step(0.5, color.w);
vec3 tempVec = position.xyz * sign(posLight - 0.5) - (worldPos * posLight);
lightVec.xyz = tempVec;
float dist = length(tempVec);
lightDir.w = clamp(1.0 - position.w * dist * posLight, 0.0, 1.0);
lightDir.xyz = tempVec / vec3(dist);
}
void main(){
vec4 pos = vec4(inPosition, 1.0);
@ -66,35 +58,30 @@ void main(){
// specific to normal maps:
//--------------------------
#if defined(NORMALMAP) || defined(NORMALMAP_1) || defined(NORMALMAP_2) || defined(NORMALMAP_3) || defined(NORMALMAP_4) || defined(NORMALMAP_5) || defined(NORMALMAP_6) || defined(NORMALMAP_7) || defined(NORMALMAP_8) || defined(NORMALMAP_9) || defined(NORMALMAP_10) || defined(NORMALMAP_11)
vec3 wvTangent = normalize(g_NormalMatrix * inTangent.xyz);
vec3 wvBinormal = cross(wvNormal, wvTangent);
vec3 wvTangent = normalize(g_NormalMatrix * inTangent.xyz);
vec3 wvBinormal = cross(wvNormal, wvTangent);
mat3 tbnMat = mat3(wvTangent, wvBinormal * -inTangent.w,wvNormal);
mat3 tbnMat = mat3(wvTangent, wvBinormal * inTangent.w,wvNormal);
vPosition = wvPosition * tbnMat;
vViewDir = viewDir * tbnMat;
lightComputeDir(wvPosition, lightColor, wvLightPos, vLightDir);
vLightDir.xyz = (vLightDir.xyz * tbnMat).xyz;
#else
vPosition = wvPosition * tbnMat;
vViewDir = viewDir * tbnMat;
//-------------------------
// general to all lighting
//-------------------------
vNormal = wvNormal;
lightComputeDir(wvPosition, lightColor.w, wvLightPos, vLightDir, lightVec);
vLightDir.xyz = (vLightDir.xyz * tbnMat).xyz;
#else
//-------------------------
// general to all lighting
//-------------------------
vNormal = wvNormal;
vPosition = wvPosition;
vViewDir = viewDir;
vPosition = wvPosition;
vViewDir = viewDir;
lightComputeDir(wvPosition, lightColor, wvLightPos, vLightDir);
lightComputeDir(wvPosition, lightColor.w, wvLightPos, vLightDir, lightVec);
#endif
//computing spot direction in view space and unpacking spotlight cos
// spotVec=(g_ViewMatrix *vec4(g_LightDirection.xyz,0.0) );
// spotVec.w=floor(g_LightDirection.w)*0.001;
// lightVec.w = fract(g_LightDirection.w);
AmbientSum = vec4(0.2, 0.2, 0.2, 1.0) * g_AmbientLightColor; // Default: ambient color is dark gray
AmbientSum = g_AmbientLightColor; // Default: ambient color is dark gray
DiffuseSum = lightColor;
SpecularSum = lightColor;

Loading…
Cancel
Save