Adds an ArmatureDebugger

monkanim
Nehon 7 years ago
parent 3eb890da38
commit 4040a1e412
  1. 159
      jme3-core/src/main/java/com/jme3/scene/debug/custom/ArmatureBone.java
  2. 154
      jme3-core/src/main/java/com/jme3/scene/debug/custom/ArmatureDebugAppState.java
  3. 113
      jme3-core/src/main/java/com/jme3/scene/debug/custom/ArmatureDebugger.java
  4. 60
      jme3-core/src/main/java/com/jme3/scene/debug/custom/ArmatureInterJointsWire.java
  5. 448
      jme3-core/src/main/java/com/jme3/scene/debug/custom/BoneShape.java
  6. 156
      jme3-core/src/main/java/com/jme3/scene/debug/custom/SkeletonDebugAppState.java
  7. 22
      jme3-core/src/main/java/com/jme3/scene/shape/AbstractBox.java
  8. 9
      jme3-core/src/main/java/com/jme3/scene/shape/Box.java
  9. 9
      jme3-core/src/main/java/com/jme3/scene/shape/StripBox.java
  10. 49
      jme3-core/src/main/resources/Common/MatDefs/Misc/fakeLighting.j3md
  11. 31
      jme3-core/src/main/resources/Common/MatDefs/ShaderNodes/Basic/Mat3Vec3Mult.j3sn
  12. 3
      jme3-core/src/main/resources/Common/MatDefs/ShaderNodes/Basic/Mat3Vec3Mult100.frag
  13. 33
      jme3-core/src/main/resources/Common/MatDefs/ShaderNodes/Misc/fakeLighting.j3sn
  14. 9
      jme3-core/src/main/resources/Common/MatDefs/ShaderNodes/Misc/fakeLighting100.frag
  15. 112
      jme3-examples/src/main/java/jme3test/model/anim/TestArmature.java

@ -32,58 +32,51 @@ package com.jme3.scene.debug.custom;
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
import java.util.Map;
import com.jme3.animation.Bone;
import com.jme3.animation.Skeleton;
import com.jme3.animation.Armature;
import com.jme3.animation.Joint;
import com.jme3.bounding.*;
import com.jme3.math.FastMath;
import com.jme3.math.Quaternion;
import com.jme3.math.Vector3f;
import com.jme3.scene.Geometry;
import com.jme3.scene.Mesh;
import com.jme3.scene.Node;
import com.jme3.scene.VertexBuffer;
import com.jme3.scene.*;
import com.jme3.scene.shape.Sphere;
import static com.jme3.util.BufferUtils.createFloatBuffer;
import java.nio.FloatBuffer;
import java.util.HashMap;
import java.util.Map;
import static com.jme3.util.BufferUtils.createFloatBuffer;
/**
* The class that displays either wires between the bones' heads if no length
* data is supplied and full bones' shapes otherwise.
*/
public class SkeletonBone extends Node {
public class ArmatureBone extends Node {
/**
* The skeleton to be displayed.
* The armature to be displayed.
*/
private Skeleton skeleton;
private Armature armature;
/**
* The map between the bone index and its length.
*/
private Map<Bone, Node> boneNodes = new HashMap<Bone, Node>();
private Map<Node, Bone> nodeBones = new HashMap<Node, Bone>();
private Map<Joint, Node> jointNode = new HashMap<>();
private Map<Node, Joint> nodeJoint = new HashMap<>();
private Node selectedNode = null;
private boolean guessBonesOrientation = false;
private boolean guessJointsOrientation = false;
/**
* Creates a wire with bone lengths data. If the data is supplied then the
* wires will show each full bone (from head to tail).
*
* @param skeleton the skeleton that will be shown
* @param armature the armature that will be shown
* @param boneLengths a map between the bone's index and the bone's length
*/
public SkeletonBone(Skeleton skeleton, Map<Integer, Float> boneLengths, boolean guessBonesOrientation) {
this.skeleton = skeleton;
this.skeleton.reset();
this.skeleton.updateWorldVectors();
this.guessBonesOrientation = guessBonesOrientation;
BoneShape boneShape = new BoneShape(5, 12, 0.02f, 0.07f, 1f, false, false);
Sphere jointShape = new Sphere(10, 10, 0.1f);
public ArmatureBone(Armature armature, Map<Integer, Float> boneLengths, boolean guessJointsOrientation) {
this.armature = armature;
this.guessJointsOrientation = guessJointsOrientation;
BoneShape boneShape = new BoneShape();
Sphere jointShape = new Sphere(16, 16, 0.05f);
jointShape.setBuffer(VertexBuffer.Type.Color, 4, createFloatBuffer(jointShape.getVertexCount() * 4));
FloatBuffer cb = jointShape.getFloatBuffer(VertexBuffer.Type.Color);
@ -92,13 +85,13 @@ public class SkeletonBone extends Node {
cb.put(0.05f).put(0.05f).put(0.05f).put(1f);
}
for (Bone bone : skeleton.getRoots()) {
createSkeletonGeoms(bone, boneShape, jointShape, boneLengths, skeleton, this, guessBonesOrientation);
for (Joint joint : armature.getRoots()) {
createSkeletonGeoms(joint, boneShape, jointShape, boneLengths, armature, this, guessJointsOrientation);
}
this.updateModelBound();
Sphere originShape = new Sphere(10, 10, 0.02f);
Sphere originShape = new Sphere(16, 16, 0.02f);
originShape.setBuffer(VertexBuffer.Type.Color, 4, createFloatBuffer(originShape.getVertexCount() * 4));
cb = originShape.getFloatBuffer(VertexBuffer.Type.Color);
cb.rewind();
@ -118,91 +111,65 @@ public class SkeletonBone extends Node {
}
origin.scale(scale);
attachChild(origin);
}
protected final void createSkeletonGeoms(Bone bone, Mesh boneShape, Mesh jointShape, Map<Integer, Float> boneLengths, Skeleton skeleton, Node parent, boolean guessBonesOrientation) {
protected final void createSkeletonGeoms(Joint joint, Mesh boneShape, Mesh jointShape, Map<Integer, Float> boneLengths, Armature armature, Node parent, boolean guessBonesOrientation) {
if (guessBonesOrientation && bone.getName().equalsIgnoreCase("Site")) {
//BVH skeleton have a useless end point bone named Site
return;
}
Node n = new Node(bone.getName() + "Node");
Geometry bGeom = new Geometry(bone.getName(), boneShape);
Geometry jGeom = new Geometry(bone.getName() + "Joint", jointShape);
n.setLocalTranslation(bone.getLocalPosition());
n.setLocalRotation(bone.getLocalRotation());
Node n = new Node(joint.getName() + "Node");
Geometry bGeom = new Geometry(joint.getName() + "Bone", boneShape);
Geometry jGeom = new Geometry(joint.getName() + "Joint", jointShape);
n.setLocalTransform(joint.getLocalTransform());
float boneLength = boneLengths.get(skeleton.getBoneIndex(bone));
n.setLocalScale(bone.getLocalScale());
bGeom.setLocalRotation(new Quaternion().fromAngleAxis(-FastMath.HALF_PI, Vector3f.UNIT_X).normalizeLocal());
float boneLength = boneLengths.get(armature.getJointIndex(joint));
if (guessBonesOrientation) {
//One child only, the bone direction is from the parent joint to the child joint.
if (bone.getChildren().size() == 1) {
Vector3f v = bone.getChildren().get(0).getLocalPosition();
if (joint.getChildren().size() == 1) {
Vector3f v = joint.getChildren().get(0).getLocalTranslation();
Quaternion q = new Quaternion();
q.lookAt(v, Vector3f.UNIT_Z);
bGeom.setLocalRotation(q);
boneLength = v.length();
}
//no child, the bone has the same direction as the parent bone.
if (bone.getChildren().isEmpty()) {
if (parent.getChildren().size() > 0) {
bGeom.setLocalRotation(parent.getChild(0).getLocalRotation());
} else {
//no parent, let's use the bind orientation of the bone
bGeom.setLocalRotation(bone.getBindRotation());
if (joint.getChildren().isEmpty()) {
//no parent, let's use the bind orientation of the bone
Spatial s = parent.getChild(0);
if (s != null) {
bGeom.setLocalRotation(s.getLocalRotation());
}
}
}
bGeom.setLocalScale(boneLength);
jGeom.setLocalScale(boneLength);
n.attachChild(bGeom);
n.attachChild(jGeom);
//tip
if (bone.getChildren().size() != 1) {
Geometry gt = jGeom.clone();
gt.scale(0.8f);
Vector3f v = new Vector3f(0, boneLength, 0);
if (guessBonesOrientation) {
if (bone.getChildren().isEmpty()) {
if (parent.getChildren().size() > 0) {
gt.setLocalTranslation(bGeom.getLocalRotation().mult(parent.getChild(0).getLocalRotation()).mult(v, v));
} else {
gt.setLocalTranslation(bGeom.getLocalRotation().mult(bone.getBindRotation()).mult(v, v));
}
}
} else {
gt.setLocalTranslation(v);
}
float boneScale = boneLength * 0.8f;
float scale = boneScale / 8f;
bGeom.setLocalScale(new Vector3f(scale, scale, boneScale));
Vector3f offset = new Vector3f(0, 0, boneLength * 0.1f);
bGeom.getLocalRotation().multLocal(offset);
bGeom.setLocalTranslation(offset);
jGeom.setLocalScale(boneLength);
n.attachChild(gt);
if (joint.getChildren().size() <= 1) {
n.attachChild(bGeom);
}
n.attachChild(jGeom);
boneNodes.put(bone, n);
nodeBones.put(n, bone);
jointNode.put(joint, n);
nodeJoint.put(n, joint);
parent.attachChild(n);
for (Bone childBone : bone.getChildren()) {
createSkeletonGeoms(childBone, boneShape, jointShape, boneLengths, skeleton, n, guessBonesOrientation);
for (Joint child : joint.getChildren()) {
createSkeletonGeoms(child, boneShape, jointShape, boneLengths, armature, n, guessBonesOrientation);
}
}
protected Bone select(Geometry g) {
protected Joint select(Geometry g) {
Node parentNode = g.getParent();
if (parent != null) {
Bone b = nodeBones.get(parentNode);
if (b != null) {
Joint j = nodeJoint.get(parentNode);
if (j != null) {
selectedNode = parentNode;
}
return b;
return j;
}
return null;
}
@ -212,17 +179,12 @@ public class SkeletonBone extends Node {
}
protected final void updateSkeletonGeoms(Bone bone) {
if (guessBonesOrientation && bone.getName().equalsIgnoreCase("Site")) {
return;
}
Node n = boneNodes.get(bone);
n.setLocalTranslation(bone.getLocalPosition());
n.setLocalRotation(bone.getLocalRotation());
n.setLocalScale(bone.getLocalScale());
protected final void updateSkeletonGeoms(Joint joint) {
Node n = jointNode.get(joint);
n.setLocalTransform(joint.getLocalTransform());
for (Bone childBone : bone.getChildren()) {
updateSkeletonGeoms(childBone);
for (Joint child : joint.getChildren()) {
updateSkeletonGeoms(child);
}
}
@ -230,9 +192,8 @@ public class SkeletonBone extends Node {
* The method updates the geometry according to the positions of the bones.
*/
public void updateGeometry() {
for (Bone bone : skeleton.getRoots()) {
updateSkeletonGeoms(bone);
for (Joint joint : armature.getRoots()) {
updateSkeletonGeoms(joint);
}
}
}

@ -0,0 +1,154 @@
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
package com.jme3.scene.debug.custom;
import com.jme3.animation.*;
import com.jme3.app.Application;
import com.jme3.app.state.AbstractAppState;
import com.jme3.app.state.AppStateManager;
import com.jme3.input.MouseInput;
import com.jme3.input.controls.ActionListener;
import com.jme3.input.controls.MouseButtonTrigger;
import com.jme3.light.DirectionalLight;
import com.jme3.math.ColorRGBA;
import com.jme3.math.Vector3f;
import com.jme3.renderer.ViewPort;
import com.jme3.scene.*;
import java.util.*;
/**
* @author Nehon
*/
public class ArmatureDebugAppState extends AbstractAppState {
private Node debugNode = new Node("debugNode");
private Map<Armature, ArmatureDebugger> armatures = new HashMap<>();
private Map<Armature, Joint> selectedBones = new HashMap<>();
private Application app;
@Override
public void initialize(AppStateManager stateManager, Application app) {
ViewPort vp = app.getRenderManager().createMainView("debug", app.getCamera());
vp.attachScene(debugNode);
vp.setClearDepth(true);
this.app = app;
for (ArmatureDebugger armatureDebugger : armatures.values()) {
armatureDebugger.initialize(app.getAssetManager());
}
app.getInputManager().addListener(actionListener, "shoot");
app.getInputManager().addMapping("shoot", new MouseButtonTrigger(MouseInput.BUTTON_LEFT), new MouseButtonTrigger(MouseInput.BUTTON_RIGHT));
super.initialize(stateManager, app);
debugNode.addLight(new DirectionalLight(new Vector3f(-1f, -1f, -1f).normalizeLocal()));
debugNode.addLight(new DirectionalLight(new Vector3f(1f, 1f, 1f).normalizeLocal(), new ColorRGBA(0.5f, 0.5f, 0.5f, 1.0f)));
}
@Override
public void update(float tpf) {
debugNode.updateLogicalState(tpf);
debugNode.updateGeometricState();
}
public ArmatureDebugger addArmature(ArmatureControl armatureControl, boolean guessJointsOrientation) {
Armature armature = armatureControl.getArmature();
Spatial forSpatial = armatureControl.getSpatial();
return addArmature(armature, forSpatial, guessJointsOrientation);
}
public ArmatureDebugger addArmature(Armature armature, Spatial forSpatial, boolean guessJointsOrientation) {
ArmatureDebugger ad = new ArmatureDebugger(forSpatial.getName() + "_Armature", armature, guessJointsOrientation);
ad.setLocalTransform(forSpatial.getWorldTransform());
if (forSpatial instanceof Node) {
List<Geometry> geoms = new ArrayList<>();
findGeoms((Node) forSpatial, geoms);
if (geoms.size() == 1) {
ad.setLocalTransform(geoms.get(0).getWorldTransform());
}
}
armatures.put(armature, ad);
debugNode.attachChild(ad);
if (isInitialized()) {
ad.initialize(app.getAssetManager());
}
return ad;
}
private void findGeoms(Node node, List<Geometry> geoms) {
for (Spatial spatial : node.getChildren()) {
if (spatial instanceof Geometry) {
geoms.add((Geometry) spatial);
} else if (spatial instanceof Node) {
findGeoms((Node) spatial, geoms);
}
}
}
/**
* Pick a Target Using the Mouse Pointer. <ol><li>Map "pick target" action
* to a MouseButtonTrigger. <li>flyCam.setEnabled(false);
* <li>inputManager.setCursorVisible(true); <li>Implement action in
* AnalogListener (TODO).</ol>
*/
private ActionListener actionListener = new ActionListener() {
public void onAction(String name, boolean isPressed, float tpf) {
//if (name.equals("shoot") && isPressed) {
// CollisionResults results = new CollisionResults();
// Vector2f click2d = app.getInputManager().getCursorPosition();
// Vector3f click3d = app.getCamera().getWorldCoordinates(new Vector2f(click2d.x, click2d.y), 0f).clone();
// Vector3f dir = app.getCamera().getWorldCoordinates(new Vector2f(click2d.x, click2d.y), 1f).subtractLocal(click3d);
// Ray ray = new Ray(click3d, dir);
//
// debugNode.collideWith(ray, results);
//
// if (results.size() > 0) {
// // The closest result is the target that the player picked:
// Geometry target = results.getClosestCollision().getGeometry();
// for (ArmatureDebugger skeleton : armatures.values()) {
// Joint selectedBone = skeleton.select(target);
// if (selectedBone != null) {
// selectedBones.put(skeleton.getArmature(), selectedBone);
// System.err.println("-----------------------");
// System.err.println("Selected Bone : " + selectedBone.getName() + " in skeleton " + skeleton.getName());
// System.err.println("Root Bone : " + (selectedBone.getParent() == null));
// System.err.println("-----------------------");
// System.err.println("Bind translation: " + selectedBone.getBindPosition());
// System.err.println("Bind rotation: " + selectedBone.getBindRotation());
// System.err.println("Bind scale: " + selectedBone.getBindScale());
// System.err.println("---");
// System.err.println("Local translation: " + selectedBone.getLocalPosition());
// System.err.println("Local rotation: " + selectedBone.getLocalRotation());
// System.err.println("Local scale: " + selectedBone.getLocalScale());
// System.err.println("---");
// System.err.println("Model translation: " + selectedBone.getModelSpacePosition());
// System.err.println("Model rotation: " + selectedBone.getModelSpaceRotation());
// System.err.println("Model scale: " + selectedBone.getModelSpaceScale());
// System.err.println("---");
// System.err.println("Bind inverse Transform: ");
// System.err.println(selectedBone.getBindInverseTransform());
// return;
// }
// }
// }
// }
}
};
// public Map<Skeleton, Bone> getSelectedBones() {
// return selectedBones;
// }
public Node getDebugNode() {
return debugNode;
}
public void setDebugNode(Node debugNode) {
this.debugNode = debugNode;
}
}

@ -32,46 +32,37 @@ package com.jme3.scene.debug.custom;
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
import com.jme3.animation.Bone;
import java.util.Map;
import com.jme3.animation.Skeleton;
import com.jme3.animation.*;
import com.jme3.asset.AssetManager;
import com.jme3.material.Material;
import com.jme3.math.ColorRGBA;
import com.jme3.scene.BatchNode;
import com.jme3.scene.Geometry;
import com.jme3.scene.Node;
import com.jme3.scene.Spatial;
import com.jme3.scene.VertexBuffer;
import com.jme3.scene.*;
import java.nio.FloatBuffer;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.*;
/**
* The class that creates a mesh to display how bones behave. If it is supplied
* with the bones' lengths it will show exactly how the bones look like on the
* scene. If not then only connections between each bone heads will be shown.
*/
public class SkeletonDebugger extends BatchNode {
public class ArmatureDebugger extends BatchNode {
/**
* The lines of the bones or the wires between their heads.
*/
private SkeletonBone bones;
private ArmatureBone bones;
private Skeleton skeleton;
private Armature armature;
/**
* The dotted lines between a bone's tail and the had of its children. Not
* available if the length data was not provided.
*/
private SkeletonInterBoneWire interBoneWires;
private List<Bone> selectedBones = new ArrayList<Bone>();
private ArmatureInterJointsWire interJointWires;
private Geometry wires;
private List<Bone> selectedJoints = new ArrayList<Bone>();
public SkeletonDebugger() {
public ArmatureDebugger() {
}
/**
@ -80,38 +71,42 @@ public class SkeletonDebugger extends BatchNode {
* and no dotted line of inter bones connection will be visible.
*
* @param name the name of the debugger's node
* @param skeleton the skeleton that will be shown
* @param armature the armature that will be shown
*/
public SkeletonDebugger(String name, Skeleton skeleton, boolean guessBonesOrientation) {
public ArmatureDebugger(String name, Armature armature, boolean guessJointsOrientation) {
super(name);
this.skeleton = skeleton;
skeleton.reset();
skeleton.updateWorldVectors();
Map<Integer, Float> boneLengths = new HashMap<Integer, Float>();
for (Bone bone : skeleton.getRoots()) {
computeLength(bone, boneLengths, skeleton);
this.armature = armature;
// armature.reset();
armature.update();
//Joints have no length we want to display the as bones so we compute their length
Map<Integer, Float> bonesLength = new HashMap<Integer, Float>();
for (Joint joint : armature.getRoots()) {
computeLength(joint, bonesLength, armature);
}
bones = new SkeletonBone(skeleton, boneLengths, guessBonesOrientation);
bones = new ArmatureBone(armature, bonesLength, guessJointsOrientation);
this.attachChild(bones);
interBoneWires = new SkeletonInterBoneWire(skeleton, boneLengths, guessBonesOrientation);
Geometry g = new Geometry(name + "_interwires", interBoneWires);
g.setBatchHint(BatchHint.Never);
this.attachChild(g);
interJointWires = new ArmatureInterJointsWire(armature, bonesLength, guessJointsOrientation);
wires = new Geometry(name + "_interwires", interJointWires);
this.attachChild(wires);
}
protected void initialize(AssetManager assetManager) {
Material mat = new Material(assetManager, "Common/MatDefs/Misc/Unshaded.j3md");
mat.setColor("Color", new ColorRGBA(0.05f, 0.05f, 0.05f, 1.0f));//new ColorRGBA(0.1f, 0.1f, 0.1f, 1.0f)
Material mat = new Material(assetManager, "Common/MatDefs/Misc/fakeLighting.j3md");
mat.setColor("Color", new ColorRGBA(0.2f, 0.2f, 0.2f, 1));
setMaterial(mat);
Material mat2 = new Material(assetManager, "Common/MatDefs/Misc/Unshaded.j3md");
mat2.setBoolean("VertexColor", true);
bones.setMaterial(mat2);
batch();
Material matWires = new Material(assetManager, "Common/MatDefs/Misc/Unshaded.j3md");
matWires.setColor("Color", ColorRGBA.Black);
wires.setMaterial(matWires);
//wires.setQueueBucket(RenderQueue.Bucket.Transparent);
// Material mat2 = new Material(assetManager, "Common/MatDefs/Misc/Unshaded.j3md");
// mat2.setBoolean("VertexColor", true);
// bones.setMaterial(mat2);
// batch();
}
@Override
@ -125,29 +120,29 @@ public class SkeletonDebugger extends BatchNode {
}
}
public Skeleton getSkeleton() {
return skeleton;
public Armature getArmature() {
return armature;
}
private void computeLength(Bone b, Map<Integer, Float> boneLengths, Skeleton skeleton) {
if (b.getChildren().isEmpty()) {
if (b.getParent() != null) {
boneLengths.put(skeleton.getBoneIndex(b), boneLengths.get(skeleton.getBoneIndex(b.getParent())) * 0.75f);
private void computeLength(Joint joint, Map<Integer, Float> jointsLength, Armature armature) {
if (joint.getChildren().isEmpty()) {
if (joint.getParent() != null) {
jointsLength.put(armature.getJointIndex(joint), jointsLength.get(armature.getJointIndex(joint.getParent())) * 0.75f);
} else {
boneLengths.put(skeleton.getBoneIndex(b), 0.1f);
jointsLength.put(armature.getJointIndex(joint), 0.1f);
}
} else {
float length = Float.MAX_VALUE;
for (Bone bone : b.getChildren()) {
float len = b.getModelSpacePosition().subtract(bone.getModelSpacePosition()).length();
for (Joint child : joint.getChildren()) {
float len = joint.getModelTransform().getTranslation().subtract(child.getModelTransform().getTranslation()).length();
if (len < length) {
length = len;
}
}
boneLengths.put(skeleton.getBoneIndex(b), length);
for (Bone bone : b.getChildren()) {
computeLength(bone, boneLengths, skeleton);
jointsLength.put(armature.getJointIndex(joint), length);
for (Joint child : joint.getChildren()) {
computeLength(child, jointsLength, armature);
}
}
}
@ -156,17 +151,17 @@ public class SkeletonDebugger extends BatchNode {
public void updateLogicalState(float tpf) {
super.updateLogicalState(tpf);
bones.updateGeometry();
if (interBoneWires != null) {
interBoneWires.updateGeometry();
if (interJointWires != null) {
interJointWires.updateGeometry();
}
}
ColorRGBA selectedColor = ColorRGBA.Orange;
ColorRGBA baseColor = new ColorRGBA(0.05f, 0.05f, 0.05f, 1f);
protected Bone select(Geometry g) {
protected Joint select(Geometry g) {
Node oldNode = bones.getSelectedNode();
Bone b = bones.select(g);
Joint b = bones.select(g);
if (b == null) {
return null;
}
@ -178,17 +173,17 @@ public class SkeletonDebugger extends BatchNode {
}
/**
* @return the skeleton wires
* @return the armature wires
*/
public SkeletonBone getBoneShapes() {
public ArmatureBone getBoneShapes() {
return bones;
}
/**
* @return the dotted line between bones (can be null)
*/
public SkeletonInterBoneWire getInterBoneWires() {
return interBoneWires;
public ArmatureInterJointsWire getInterJointWires() {
return interJointWires;
}
protected void markSelected(Node n, boolean selected) {

@ -33,34 +33,32 @@ package com.jme3.scene.debug.custom;
*/
import java.nio.FloatBuffer;
import java.util.Map;
import com.jme3.animation.Bone;
import com.jme3.animation.Skeleton;
import com.jme3.animation.Armature;
import com.jme3.animation.Joint;
import com.jme3.math.Vector3f;
import com.jme3.scene.Mesh;
import com.jme3.scene.VertexBuffer;
import com.jme3.scene.VertexBuffer.Format;
import com.jme3.scene.VertexBuffer.Type;
import com.jme3.scene.VertexBuffer.Usage;
import com.jme3.scene.VertexBuffer.*;
import com.jme3.util.BufferUtils;
import java.nio.FloatBuffer;
import java.util.Map;
/**
* A class that displays a dotted line between a bone tail and its childrens' heads.
*
* @author Marcin Roguski (Kaelthas)
*/
public class SkeletonInterBoneWire extends Mesh {
private static final int POINT_AMOUNT = 10;
public class ArmatureInterJointsWire extends Mesh {
private static final int POINT_AMOUNT = 50;
/**
* The amount of connections between bones.
*/
private int connectionsAmount;
/**
* The skeleton that will be showed.
* The armature that will be showed.
*/
private Skeleton skeleton;
private Armature armature;
/**
* The map between the bone index and its length.
*/
@ -71,18 +69,17 @@ public class SkeletonInterBoneWire extends Mesh {
/**
* Creates buffers for points. Each line has POINT_AMOUNT of points.
*
* @param skeleton the skeleton that will be showed
* @param armature the armature that will be showed
* @param boneLengths the lengths of the bones
*/
public SkeletonInterBoneWire(Skeleton skeleton, Map<Integer, Float> boneLengths, boolean guessBonesOrientation) {
this.skeleton = skeleton;
public ArmatureInterJointsWire(Armature armature, Map<Integer, Float> boneLengths, boolean guessBonesOrientation) {
this.armature = armature;
for (Bone bone : skeleton.getRoots()) {
this.countConnections(bone);
for (Joint joint : armature.getRoots()) {
this.countConnections(joint);
}
this.setMode(Mode.Points);
this.setPointSize(2);
this.boneLengths = boneLengths;
VertexBuffer pb = new VertexBuffer(Type.Position);
@ -95,27 +92,28 @@ public class SkeletonInterBoneWire extends Mesh {
}
/**
* The method updates the geometry according to the poitions of the bones.
* The method updates the geometry according to the positions of the bones.
*/
public void updateGeometry() {
VertexBuffer vb = this.getBuffer(Type.Position);
FloatBuffer posBuf = this.getFloatBuffer(Type.Position);
posBuf.clear();
for (int i = 0; i < skeleton.getBoneCount(); ++i) {
Bone bone = skeleton.getBone(i);
Vector3f parentTail = bone.getModelSpacePosition().add(bone.getModelSpaceRotation().mult(Vector3f.UNIT_Y.mult(boneLengths.get(i))));
for (int i = 0; i < armature.getJointCount(); ++i) {
Joint joint = armature.getJoint(i);
Vector3f parentTail = joint.getModelTransform().getTranslation().add(joint.getModelTransform().getRotation().mult(Vector3f.UNIT_Y.mult(boneLengths.get(i))));
if (guessBonesOrientation) {
parentTail = bone.getModelSpacePosition();
parentTail = joint.getModelTransform().getTranslation();
}
for (Bone child : bone.getChildren()) {
Vector3f childHead = child.getModelSpacePosition();
for (Joint child : joint.getChildren()) {
Vector3f childHead = child.getModelTransform().getTranslation();
Vector3f v = childHead.subtract(parentTail);
float pointDelta = v.length() / POINT_AMOUNT;
float len = v.length();
float pointDelta = 1f / POINT_AMOUNT;
v.normalizeLocal().multLocal(pointDelta);
Vector3f pointPosition = parentTail.clone();
for (int j = 0; j < POINT_AMOUNT; ++j) {
for (int j = 0; j < POINT_AMOUNT * len; ++j) {
posBuf.put(pointPosition.getX()).put(pointPosition.getY()).put(pointPosition.getZ());
pointPosition.addLocal(v);
}
@ -128,12 +126,12 @@ public class SkeletonInterBoneWire extends Mesh {
}
/**
* Th method couns the connections between bones.
* Th method counts the connections between bones.
*
* @param bone the bone where counting starts
* @param joint the bone where counting starts
*/
private void countConnections(Bone bone) {
for (Bone child : bone.getChildren()) {
private void countConnections(Joint joint) {
for (Joint child : joint.getChildren()) {
++connectionsAmount;
this.countConnections(child);
}

@ -32,20 +32,11 @@
// $Id: Cylinder.java 4131 2009-03-19 20:15:28Z blaine.dev $
package com.jme3.scene.debug.custom;
import com.jme3.export.InputCapsule;
import com.jme3.export.JmeExporter;
import com.jme3.export.JmeImporter;
import com.jme3.export.OutputCapsule;
import com.jme3.math.FastMath;
import com.jme3.math.Vector3f;
import com.jme3.scene.Mesh;
import com.jme3.math.*;
import com.jme3.scene.VertexBuffer.Type;
import com.jme3.scene.mesh.IndexBuffer;
import com.jme3.scene.shape.AbstractBox;
import com.jme3.util.BufferUtils;
import static com.jme3.util.BufferUtils.*;
import java.io.IOException;
import java.nio.FloatBuffer;
/**
@ -55,362 +46,125 @@ import java.nio.FloatBuffer;
* @author Mark Powell
* @version $Revision: 4131 $, $Date: 2009-03-19 16:15:28 -0400 (Thu, 19 Mar 2009) $
*/
public class BoneShape extends Mesh {
private int axisSamples;
private int radialSamples;
private float radius;
private float radius2;
private float height;
private boolean closed;
private boolean inverted;
/**
* Default constructor for serialization only. Do not use.
*/
public BoneShape() {
public class BoneShape extends AbstractBox {
private static Vector3f topN = new Vector3f(0, 1, 0);
private static Vector3f botN = new Vector3f(0, -1, 0);
private static Vector3f rigN = new Vector3f(1, 0, 0);
private static Vector3f lefN = new Vector3f(-1, 0, 0);
static {
Quaternion q = new Quaternion().fromAngleAxis(-FastMath.PI / 16f, Vector3f.UNIT_X);
q.multLocal(topN);
q.inverseLocal();
q.multLocal(botN);
q = new Quaternion().fromAngleAxis(FastMath.PI / 16f, Vector3f.UNIT_Y);
q.multLocal(rigN);
q.inverseLocal();
q.multLocal(lefN);
}
/**
* Creates a new Cylinder. By default its center is the origin. Usually, a
* higher sample number creates a better looking cylinder, but at the cost
* of more vertex information.
*
* @param axisSamples Number of triangle samples along the axis.
* @param radialSamples Number of triangle samples along the radial.
* @param radius The radius of the cylinder.
* @param height The cylinder's height.
*/
public BoneShape(int axisSamples, int radialSamples,
float radius, float height) {
this(axisSamples, radialSamples, radius, height, false);
}
/**
* Creates a new Cylinder. By default its center is the origin. Usually, a
* higher sample number creates a better looking cylinder, but at the cost
* of more vertex information. <br>
* If the cylinder is closed the texture is split into axisSamples parts:
* top most and bottom most part is used for top and bottom of the cylinder,
* rest of the texture for the cylinder wall. The middle of the top is
* mapped to texture coordinates (0.5, 1), bottom to (0.5, 0). Thus you need
* a suited distorted texture.
*
* @param axisSamples Number of triangle samples along the axis.
* @param radialSamples Number of triangle samples along the radial.
* @param radius The radius of the cylinder.
* @param height The cylinder's height.
* @param closed true to create a cylinder with top and bottom surface
*/
public BoneShape(int axisSamples, int radialSamples,
float radius, float height, boolean closed) {
this(axisSamples, radialSamples, radius, height, closed, false);
}
private static final short[] GEOMETRY_INDICES_DATA = {
2, 1, 0, 3, 2, 0, // back
6, 5, 4, 7, 6, 4, // right
10, 9, 8, 11, 10, 8, // front
14, 13, 12, 15, 14, 12, // left
18, 17, 16, 19, 18, 16, // top
22, 21, 20, 23, 22, 20 // bottom
};
private static final float[] GEOMETRY_NORMALS_DATA = {
0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, // back
rigN.x, rigN.y, rigN.z, rigN.x, rigN.y, rigN.z, rigN.x, rigN.y, rigN.z, rigN.x, rigN.y, rigN.z, // right
0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, // front
lefN.x, lefN.y, lefN.z, lefN.x, lefN.y, lefN.z, lefN.x, lefN.y, lefN.z, lefN.x, lefN.y, lefN.z, // left
topN.x, topN.y, topN.z, topN.x, topN.y, topN.z, topN.x, topN.y, topN.z, topN.x, topN.y, topN.z, // top
botN.x, botN.y, botN.z, botN.x, botN.y, botN.z, botN.x, botN.y, botN.z, botN.x, botN.y, botN.z // bottom
};
private static final float[] GEOMETRY_TEXTURE_DATA = {
1, 0, 0, 0, 0, 1, 1, 1, // back
1, 0, 0, 0, 0, 1, 1, 1, // right
1, 0, 0, 0, 0, 1, 1, 1, // front
1, 0, 0, 0, 0, 1, 1, 1, // left
1, 0, 0, 0, 0, 1, 1, 1, // top
1, 0, 0, 0, 0, 1, 1, 1 // bottom
};
private static final float[] GEOMETRY_POSITION_DATA = {
-0.5f, -0.5f, 0, 0.5f, -0.5f, 0, 0.5f, 0.5f, 0, -0.5f, 0.5f, 0, //back
0.5f, -0.5f, 0, 0.25f, -0.25f, 1, 0.25f, 0.25f, 1, 0.5f, 0.5f, 0, //right
0.25f, -0.25f, 1, -0.25f, -0.25f, 1, -0.25f, 0.25f, 1, 0.25f, 0.25f, 1, //front
-0.25f, -0.25f, 1, -0.5f, -0.5f, 0, -0.5f, 0.5f, 0, -0.25f, 0.25f, 1, //left
0.5f, 0.5f, 0, 0.25f, 0.25f, 1, -0.25f, 0.25f, 1, -0.5f, 0.5f, 0, // top
-0.5f, -0.5f, 0, -0.25f, -0.25f, 1, 0.25f, -0.25f, 1, 0.5f, -0.5f, 0 // bottom
};
//0,1,2,3
//1,4,6,2
//4,5,7,6
//5,0,3,7,
//2,6,7,3
//0,5,4,1
// v[0].x, v[0].y, v[0].z, v[1].x, v[1].y, v[1].z, v[2].x, v[2].y, v[2].z, v[3].x, v[3].y, v[3].z, // back
// v[1].x, v[1].y, v[1].z, v[4].x, v[4].y, v[4].z, v[6].x, v[6].y, v[6].z, v[2].x, v[2].y, v[2].z, // right
// v[4].x, v[4].y, v[4].z, v[5].x, v[5].y, v[5].z, v[7].x, v[7].y, v[7].z, v[6].x, v[6].y, v[6].z, // front
// v[5].x, v[5].y, v[5].z, v[0].x, v[0].y, v[0].z, v[3].x, v[3].y, v[3].z, v[7].x, v[7].y, v[7].z, // left
// v[2].x, v[2].y, v[2].z, v[6].x, v[6].y, v[6].z, v[7].x, v[7].y, v[7].z, v[3].x, v[3].y, v[3].z, // top
// v[0].x, v[0].y, v[0].z, v[5].x, v[5].y, v[5].z, v[4].x, v[4].y, v[4].z, v[1].x, v[1].y, v[1].z // bottom
/**
* Creates a new Cylinder. By default its center is the origin. Usually, a
* higher sample number creates a better looking cylinder, but at the cost
* of more vertex information. <br>
* If the cylinder is closed the texture is split into axisSamples parts:
* top most and bottom most part is used for top and bottom of the cylinder,
* rest of the texture for the cylinder wall. The middle of the top is
* mapped to texture coordinates (0.5, 1), bottom to (0.5, 0). Thus you need
* a suited distorted texture.
* Creates a new box.
* <p>
* The box has a center of 0,0,0 and extends in the out from the center by
* the given amount in <em>each</em> direction. So, for example, a box
* with extent of 0.5 would be the unit cube.
*
* @param axisSamples Number of triangle samples along the axis.
* @param radialSamples Number of triangle samples along the radial.
* @param radius The radius of the cylinder.
* @param height The cylinder's height.
* @param closed true to create a cylinder with top and bottom surface
* @param inverted true to create a cylinder that is meant to be viewed from the
* interior.
* @param x the size of the box along the x axis, in both directions.
* @param y the size of the box along the y axis, in both directions.
* @param z the size of the box along the z axis, in both directions.
*/
public BoneShape(int axisSamples, int radialSamples,
float radius, float height, boolean closed, boolean inverted) {
this(axisSamples, radialSamples, radius, radius, height, closed, inverted);
}
public BoneShape(int axisSamples, int radialSamples,
float radius, float radius2, float height, boolean closed, boolean inverted) {
public BoneShape() {
super();
updateGeometry(axisSamples, radialSamples, radius, radius2, height, closed, inverted);
}
/**
* @return the number of samples along the cylinder axis
*/
public int getAxisSamples() {
return axisSamples;
}
/**
* @return Returns the height.
*/
public float getHeight() {
return height;
}
/**
* @return number of samples around cylinder
*/
public int getRadialSamples() {
return radialSamples;
}
/**
* @return Returns the radius.
*/
public float getRadius() {
return radius;
}
public float getRadius2() {
return radius2;
}
/**
* @return true if end caps are used.
*/
public boolean isClosed() {
return closed;
updateGeometry();
}
/**
* @return true if normals and uvs are created for interior use
* Creates a clone of this box.
* <p>
* The cloned box will have '_clone' appended to it's name, but all other
* properties will be the same as this box.
*/
public boolean isInverted() {
return inverted;
@Override
public BoneShape clone() {
return new BoneShape();
}
/**
* Rebuilds the cylinder based on a new set of parameters.
*
* @param axisSamples the number of samples along the axis.
* @param radialSamples the number of samples around the radial.
* @param radius the radius of the bottom of the cylinder.
* @param radius2 the radius of the top of the cylinder.
* @param height the cylinder's height.
* @param closed should the cylinder have top and bottom surfaces.
* @param inverted is the cylinder is meant to be viewed from the inside.
*/
public void updateGeometry(int axisSamples, int radialSamples,
float radius, float radius2, float height, boolean closed, boolean inverted) {
this.axisSamples = axisSamples + (closed ? 2 : 0);
this.radialSamples = radialSamples;
this.radius = radius;
this.radius2 = radius2;
this.height = height;
this.closed = closed;
this.inverted = inverted;
// VertexBuffer pvb = getBuffer(Type.Position);
// VertexBuffer nvb = getBuffer(Type.Normal);
// VertexBuffer tvb = getBuffer(Type.TexCoord);
// Vertices
int vertCount = axisSamples * (radialSamples + 1) + (closed ? 2 : 0);
setBuffer(Type.Position, 3, createVector3Buffer(getFloatBuffer(Type.Position), vertCount));
// Normals
setBuffer(Type.Normal, 3, createVector3Buffer(getFloatBuffer(Type.Normal), vertCount));
// Texture co-ordinates
setBuffer(Type.TexCoord, 2, createVector2Buffer(vertCount));
int triCount = ((closed ? 2 : 0) + 2 * (axisSamples - 1)) * radialSamples;
setBuffer(Type.Index, 3, createShortBuffer(getShortBuffer(Type.Index), 3 * triCount));
//Color
setBuffer(Type.Color, 4, createFloatBuffer(vertCount * 4));
// generate geometry
float inverseRadial = 1.0f / radialSamples;
float inverseAxisLess = 1.0f / (closed ? axisSamples - 3 : axisSamples - 1);
float inverseAxisLessTexture = 1.0f / (axisSamples - 1);
float halfHeight = 0.5f * height;
// Generate points on the unit circle to be used in computing the mesh
// points on a cylinder slice.
float[] sin = new float[radialSamples + 1];
float[] cos = new float[radialSamples + 1];
for (int radialCount = 0; radialCount < radialSamples; radialCount++) {
float angle = FastMath.TWO_PI * inverseRadial * radialCount;
cos[radialCount] = FastMath.cos(angle);
sin[radialCount] = FastMath.sin(angle);
}
sin[radialSamples] = sin[0];
cos[radialSamples] = cos[0];
// calculate normals
Vector3f[] vNormals = null;
Vector3f vNormal = Vector3f.UNIT_Z;
if ((height != 0.0f) && (radius != radius2)) {
vNormals = new Vector3f[radialSamples];
Vector3f vHeight = Vector3f.UNIT_Z.mult(height);
Vector3f vRadial = new Vector3f();
for (int radialCount = 0; radialCount < radialSamples; radialCount++) {
vRadial.set(cos[radialCount], sin[radialCount], 0.0f);
Vector3f vRadius = vRadial.mult(radius);
Vector3f vRadius2 = vRadial.mult(radius2);
Vector3f vMantle = vHeight.subtract(vRadius2.subtract(vRadius));
Vector3f vTangent = vRadial.cross(Vector3f.UNIT_Z);
vNormals[radialCount] = vMantle.cross(vTangent).normalize();
}
}
FloatBuffer nb = getFloatBuffer(Type.Normal);
FloatBuffer pb = getFloatBuffer(Type.Position);
FloatBuffer tb = getFloatBuffer(Type.TexCoord);
FloatBuffer cb = getFloatBuffer(Type.Color);
cb.rewind();
for (int i = 0; i < vertCount; i++) {
cb.put(0.05f).put(0.05f).put(0.05f).put(1f);
}
// generate the cylinder itself
Vector3f tempNormal = new Vector3f();
for (int axisCount = 0, i = 0; axisCount < axisSamples; axisCount++, i++) {
float axisFraction;
float axisFractionTexture;
int topBottom = 0;
if (!closed) {
axisFraction = axisCount * inverseAxisLess; // in [0,1]
axisFractionTexture = axisFraction;
} else {
if (axisCount == 0) {
topBottom = -1; // bottom
axisFraction = 0;
axisFractionTexture = inverseAxisLessTexture;
} else if (axisCount == axisSamples - 1) {
topBottom = 1; // top
axisFraction = 1;
axisFractionTexture = 1 - inverseAxisLessTexture;
} else {
axisFraction = (axisCount - 1) * inverseAxisLess;
axisFractionTexture = axisCount * inverseAxisLessTexture;
}
}
// compute center of slice
float z = height * axisFraction;
Vector3f sliceCenter = new Vector3f(0, 0, z);
// compute slice vertices with duplication at end point
int save = i;
for (int radialCount = 0; radialCount < radialSamples; radialCount++, i++) {
float radialFraction = radialCount * inverseRadial; // in [0,1)
tempNormal.set(cos[radialCount], sin[radialCount], 0.0f);
if (vNormals != null) {
vNormal = vNormals[radialCount];
} else if (radius == radius2) {
vNormal = tempNormal;
}
if (topBottom == 0) {
if (!inverted)
nb.put(vNormal.x).put(vNormal.y).put(vNormal.z);
else
nb.put(-vNormal.x).put(-vNormal.y).put(-vNormal.z);
} else {
nb.put(0).put(0).put(topBottom * (inverted ? -1 : 1));
}
tempNormal.multLocal((radius - radius2) * axisFraction + radius2)
.addLocal(sliceCenter);
pb.put(tempNormal.x).put(tempNormal.y).put(tempNormal.z);
tb.put((inverted ? 1 - radialFraction : radialFraction))
.put(axisFractionTexture);
}
BufferUtils.copyInternalVector3(pb, save, i);
BufferUtils.copyInternalVector3(nb, save, i);
tb.put((inverted ? 0.0f : 1.0f))
.put(axisFractionTexture);
}
if (closed) {
pb.put(0).put(0).put(-halfHeight); // bottom center
nb.put(0).put(0).put(-1 * (inverted ? -1 : 1));
tb.put(0.5f).put(0);
pb.put(0).put(0).put(halfHeight); // top center
nb.put(0).put(0).put(1 * (inverted ? -1 : 1));
tb.put(0.5f).put(1);
protected void doUpdateGeometryIndices() {
if (getBuffer(Type.Index) == null) {
setBuffer(Type.Index, 3, BufferUtils.createShortBuffer(GEOMETRY_INDICES_DATA));
}
}
IndexBuffer ib = getIndexBuffer();
int index = 0;
// Connectivity
for (int axisCount = 0, axisStart = 0; axisCount < axisSamples - 1; axisCount++) {
int i0 = axisStart;
int i1 = i0 + 1;
axisStart += radialSamples + 1;
int i2 = axisStart;
int i3 = i2 + 1;
for (int i = 0; i < radialSamples; i++) {
if (closed && axisCount == 0) {
if (!inverted) {
ib.put(index++, i0++);
ib.put(index++, vertCount - 2);
ib.put(index++, i1++);
} else {
ib.put(index++, i0++);
ib.put(index++, i1++);
ib.put(index++, vertCount - 2);
}
} else if (closed && axisCount == axisSamples - 2) {
ib.put(index++, i2++);
ib.put(index++, inverted ? vertCount - 1 : i3++);
ib.put(index++, inverted ? i3++ : vertCount - 1);
} else {
ib.put(index++, i0++);
ib.put(index++, inverted ? i2 : i1);
ib.put(index++, inverted ? i1 : i2);
ib.put(index++, i1++);
ib.put(index++, inverted ? i2++ : i3++);
ib.put(index++, inverted ? i3++ : i2++);
}
}
protected void doUpdateGeometryNormals() {
if (getBuffer(Type.Normal) == null) {
setBuffer(Type.Normal, 3, BufferUtils.createFloatBuffer(GEOMETRY_NORMALS_DATA));
}
updateBound();
}
@Override
public void read(JmeImporter e) throws IOException {
super.read(e);
InputCapsule capsule = e.getCapsule(this);
axisSamples = capsule.readInt("axisSamples", 0);
radialSamples = capsule.readInt("radialSamples", 0);
radius = capsule.readFloat("radius", 0);
radius2 = capsule.readFloat("radius2", 0);
height = capsule.readFloat("height", 0);
closed = capsule.readBoolean("closed", false);
inverted = capsule.readBoolean("inverted", false);
protected void doUpdateGeometryTextures() {
if (getBuffer(Type.TexCoord) == null) {
setBuffer(Type.TexCoord, 2, BufferUtils.createFloatBuffer(GEOMETRY_TEXTURE_DATA));
}
}
@Override
public void write(JmeExporter e) throws IOException {
super.write(e);
OutputCapsule capsule = e.getCapsule(this);
capsule.write(axisSamples, "axisSamples", 0);
capsule.write(radialSamples, "radialSamples", 0);
capsule.write(radius, "radius", 0);
capsule.write(radius2, "radius2", 0);
capsule.write(height, "height", 0);
capsule.write(closed, "closed", false);
capsule.write(inverted, "inverted", false);
protected void doUpdateGeometryVertices() {
FloatBuffer fpb = BufferUtils.createVector3Buffer(24);
fpb.put(GEOMETRY_POSITION_DATA);
setBuffer(Type.Position, 3, fpb);
updateBound();
}

@ -1,156 +0,0 @@
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
package com.jme3.scene.debug.custom;
import com.jme3.animation.Bone;
import com.jme3.animation.Skeleton;
import com.jme3.animation.SkeletonControl;
import com.jme3.app.Application;
import com.jme3.app.state.AbstractAppState;
import com.jme3.app.state.AppStateManager;
import com.jme3.collision.CollisionResults;
import com.jme3.input.MouseInput;
import com.jme3.input.controls.ActionListener;
import com.jme3.input.controls.MouseButtonTrigger;
import com.jme3.math.Ray;
import com.jme3.math.Vector2f;
import com.jme3.math.Vector3f;
import com.jme3.renderer.ViewPort;
import com.jme3.scene.Geometry;
import com.jme3.scene.Node;
import com.jme3.scene.Spatial;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
/**
* @author Nehon
*/
public class SkeletonDebugAppState extends AbstractAppState {
private Node debugNode = new Node("debugNode");
private Map<Skeleton, SkeletonDebugger> skeletons = new HashMap<Skeleton, SkeletonDebugger>();
private Map<Skeleton, Bone> selectedBones = new HashMap<Skeleton, Bone>();
private Application app;
@Override
public void initialize(AppStateManager stateManager, Application app) {
ViewPort vp = app.getRenderManager().createMainView("debug", app.getCamera());
vp.attachScene(debugNode);
vp.setClearDepth(true);
this.app = app;
for (SkeletonDebugger skeletonDebugger : skeletons.values()) {
skeletonDebugger.initialize(app.getAssetManager());
}
app.getInputManager().addListener(actionListener, "shoot");
app.getInputManager().addMapping("shoot", new MouseButtonTrigger(MouseInput.BUTTON_LEFT), new MouseButtonTrigger(MouseInput.BUTTON_RIGHT));
super.initialize(stateManager, app);
}
@Override
public void update(float tpf) {
debugNode.updateLogicalState(tpf);
debugNode.updateGeometricState();
}
public SkeletonDebugger addSkeleton(SkeletonControl skeletonControl, boolean guessBonesOrientation) {
Skeleton skeleton = skeletonControl.getSkeleton();
Spatial forSpatial = skeletonControl.getSpatial();
return addSkeleton(skeleton, forSpatial, guessBonesOrientation);
}
public SkeletonDebugger addSkeleton(Skeleton skeleton, Spatial forSpatial, boolean guessBonesOrientation) {
SkeletonDebugger sd = new SkeletonDebugger(forSpatial.getName() + "_Skeleton", skeleton, guessBonesOrientation);
sd.setLocalTransform(forSpatial.getWorldTransform());
if (forSpatial instanceof Node) {
List<Geometry> geoms = new ArrayList<>();
findGeoms((Node) forSpatial, geoms);
if (geoms.size() == 1) {
sd.setLocalTransform(geoms.get(0).getWorldTransform());
}
}
skeletons.put(skeleton, sd);
debugNode.attachChild(sd);
if (isInitialized()) {
sd.initialize(app.getAssetManager());
}
return sd;
}
private void findGeoms(Node node, List<Geometry> geoms) {
for (Spatial spatial : node.getChildren()) {
if (spatial instanceof Geometry) {
geoms.add((Geometry) spatial);
} else if (spatial instanceof Node) {
findGeoms((Node) spatial, geoms);
}
}
}
/**
* Pick a Target Using the Mouse Pointer. <ol><li>Map "pick target" action
* to a MouseButtonTrigger. <li>flyCam.setEnabled(false);
* <li>inputManager.setCursorVisible(true); <li>Implement action in
* AnalogListener (TODO).</ol>
*/
private ActionListener actionListener = new ActionListener() {
public void onAction(String name, boolean isPressed, float tpf) {
if (name.equals("shoot") && isPressed) {
CollisionResults results = new CollisionResults();
Vector2f click2d = app.getInputManager().getCursorPosition();
Vector3f click3d = app.getCamera().getWorldCoordinates(new Vector2f(click2d.x, click2d.y), 0f).clone();
Vector3f dir = app.getCamera().getWorldCoordinates(new Vector2f(click2d.x, click2d.y), 1f).subtractLocal(click3d);
Ray ray = new Ray(click3d, dir);
debugNode.collideWith(ray, results);
if (results.size() > 0) {
// The closest result is the target that the player picked:
Geometry target = results.getClosestCollision().getGeometry();
for (SkeletonDebugger skeleton : skeletons.values()) {
Bone selectedBone = skeleton.select(target);
if (selectedBone != null) {
selectedBones.put(skeleton.getSkeleton(), selectedBone);
System.err.println("-----------------------");
System.err.println("Selected Bone : " + selectedBone.getName() + " in skeleton " + skeleton.getName());
System.err.println("Root Bone : " + (selectedBone.getParent() == null));
System.err.println("-----------------------");
System.err.println("Bind translation: " + selectedBone.getBindPosition());
System.err.println("Bind rotation: " + selectedBone.getBindRotation());
System.err.println("Bind scale: " + selectedBone.getBindScale());
System.err.println("---");
System.err.println("Local translation: " + selectedBone.getLocalPosition());
System.err.println("Local rotation: " + selectedBone.getLocalRotation());
System.err.println("Local scale: " + selectedBone.getLocalScale());
System.err.println("---");
System.err.println("Model translation: " + selectedBone.getModelSpacePosition());
System.err.println("Model rotation: " + selectedBone.getModelSpaceRotation());
System.err.println("Model scale: " + selectedBone.getModelSpaceScale());
System.err.println("---");
System.err.println("Bind inverse Transform: ");
System.err.println(selectedBone.getBindInverseTransform());
return;
}
}
}
}
}
};
public Map<Skeleton, Bone> getSelectedBones() {
return selectedBones;
}
public Node getDebugNode() {
return debugNode;
}
public void setDebugNode(Node debugNode) {
this.debugNode = debugNode;
}
}

@ -31,12 +31,10 @@
*/
package com.jme3.scene.shape;
import com.jme3.export.InputCapsule;
import com.jme3.export.JmeExporter;
import com.jme3.export.JmeImporter;
import com.jme3.export.OutputCapsule;
import com.jme3.export.*;
import com.jme3.math.Vector3f;
import com.jme3.scene.Mesh;
import java.io.IOException;
/**
@ -88,12 +86,12 @@ public abstract class AbstractBox extends Mesh {
/**
* Convert the indices into the list of vertices that define the box's geometry.
*/
protected abstract void duUpdateGeometryIndices();
protected abstract void doUpdateGeometryIndices();
/**
* Update the normals of each of the box's planes.
*/
protected abstract void duUpdateGeometryNormals();
protected abstract void doUpdateGeometryNormals();
/**
* Update the points that define the texture of the box.
@ -101,14 +99,14 @@ public abstract class AbstractBox extends Mesh {
* It's a one-to-one ratio, where each plane of the box has its own copy
* of the texture. That is, the texture is repeated one time for each face.
*/
protected abstract void duUpdateGeometryTextures();
protected abstract void doUpdateGeometryTextures();
/**
* Update the position of the vertices that define the box.
* <p>
* These eight points are determined from the minimum and maximum point.
*/
protected abstract void duUpdateGeometryVertices();
protected abstract void doUpdateGeometryVertices();
/**
* Get the center point of this box.
@ -145,10 +143,10 @@ public abstract class AbstractBox extends Mesh {
* need to call this method afterwards in order to update the box.
*/
public final void updateGeometry() {
duUpdateGeometryVertices();
duUpdateGeometryNormals();
duUpdateGeometryTextures();
duUpdateGeometryIndices();
doUpdateGeometryVertices();
doUpdateGeometryNormals();
doUpdateGeometryTextures();
doUpdateGeometryIndices();
setStatic();
}

@ -35,6 +35,7 @@ package com.jme3.scene.shape;
import com.jme3.math.Vector3f;
import com.jme3.scene.VertexBuffer.Type;
import com.jme3.util.BufferUtils;
import java.nio.FloatBuffer;
/**
@ -144,25 +145,25 @@ public class Box extends AbstractBox {
return new Box(center.clone(), xExtent, yExtent, zExtent);
}
protected void duUpdateGeometryIndices() {
protected void doUpdateGeometryIndices() {
if (getBuffer(Type.Index) == null){
setBuffer(Type.Index, 3, BufferUtils.createShortBuffer(GEOMETRY_INDICES_DATA));
}
}
protected void duUpdateGeometryNormals() {
protected void doUpdateGeometryNormals() {
if (getBuffer(Type.Normal) == null){
setBuffer(Type.Normal, 3, BufferUtils.createFloatBuffer(GEOMETRY_NORMALS_DATA));
}
}
protected void duUpdateGeometryTextures() {
protected void doUpdateGeometryTextures() {
if (getBuffer(Type.TexCoord) == null){
setBuffer(Type.TexCoord, 2, BufferUtils.createFloatBuffer(GEOMETRY_TEXTURE_DATA));
}
}
protected void duUpdateGeometryVertices() {
protected void doUpdateGeometryVertices() {
FloatBuffer fpb = BufferUtils.createVector3Buffer(24);
Vector3f[] v = computeVertices();
fpb.put(new float[] {

@ -35,6 +35,7 @@ package com.jme3.scene.shape;
import com.jme3.math.Vector3f;
import com.jme3.scene.VertexBuffer.Type;
import com.jme3.util.BufferUtils;
import java.nio.FloatBuffer;
/**
@ -138,13 +139,13 @@ public class StripBox extends AbstractBox {
return new StripBox(center.clone(), xExtent, yExtent, zExtent);
}
protected void duUpdateGeometryIndices() {
protected void doUpdateGeometryIndices() {
if (getBuffer(Type.Index) == null){
setBuffer(Type.Index, 3, BufferUtils.createShortBuffer(GEOMETRY_INDICES_DATA));
}
}
protected void duUpdateGeometryNormals() {
protected void doUpdateGeometryNormals() {
if (getBuffer(Type.Normal) == null){
float[] normals = new float[8 * 3];
@ -163,13 +164,13 @@ public class StripBox extends AbstractBox {
}
}
protected void duUpdateGeometryTextures() {
protected void doUpdateGeometryTextures() {
if (getBuffer(Type.TexCoord) == null){
setBuffer(Type.TexCoord, 2, BufferUtils.createFloatBuffer(GEOMETRY_TEXTURE_DATA));
}
}
protected void duUpdateGeometryVertices() {
protected void doUpdateGeometryVertices() {
FloatBuffer fpb = BufferUtils.createVector3Buffer(8 * 3);
Vector3f[] v = computeVertices();
fpb.put(new float[] {

@ -0,0 +1,49 @@
MaterialDef FakeLighting {
MaterialParameters {
Vector4 Color
}
Technique {
WorldParameters {
WorldViewProjectionMatrix
NormalMatrix
}
VertexShaderNodes {
ShaderNode Mat3Vec3Mult {
Definition: Mat3Vec3Mult: Common/MatDefs/ShaderNodes/Basic/Mat3Vec3Mult.j3sn
InputMappings {
matrix3 = WorldParam.NormalMatrix
vector3 = Attr.inNormal
}
OutputMappings {
}
}
ShaderNode CommonVert {
Definition: CommonVert: Common/MatDefs/ShaderNodes/Common/CommonVert.j3sn
InputMappings {
worldViewProjectionMatrix = WorldParam.WorldViewProjectionMatrix
modelPosition = Attr.inPosition
}
OutputMappings {
Global.position = projPosition
}
}
}
FragmentShaderNodes {
ShaderNode FakeLighting {
Definition: FakeLighting: Common/MatDefs/ShaderNodes/Misc/fakeLighting.j3sn
InputMappings {
inColor = MatParam.Color
normal = Mat3Vec3Mult.outVector3.xyz
}
OutputMappings {
Global.color = outColor
}
}
}
}
}

@ -0,0 +1,31 @@
ShaderNodeDefinitions{
ShaderNodeDefinition Mat3Vec3Mult {
//Vertex/Fragment
Type: Vertex
//Shader GLSL<version>: <Path to shader>
Shader GLSL100: Common/MatDefs/ShaderNodes/Basic/Mat3Vec3Mult100.frag
Documentation{
//type documentation here. This is optional but recommended
//@input <glsltype> <varName> <description>
@input mat3 matrix3 the mat3
@input vec3 vector3 the vec3
//@output <glslType> <varName> <description>
@output vec3 outVector3 the output vector
}
Input {
//all the node inputs
//<glslType> <varName>
mat3 matrix3
vec3 vector3
}
Output {
//all the node outputs
//<glslType> <varName>
vec3 outVector3
}
}
}

@ -0,0 +1,33 @@
ShaderNodeDefinitions{
ShaderNodeDefinition FakeLighting {
//Vertex/Fragment
Type: Fragment
//Shader GLSL<version>: <Path to shader>
Shader GLSL100: Common/MatDefs/ShaderNodes/Misc/fakeLighting100.frag
Documentation{
//type documentation here. This is optional but recommended
//@input <glsltype> <varName> <description>
@input vec4 inColor The input color
@input vec3 normal The normal in view space
//@output <glslType> <varName> <description>
@output vec4 outColor The modified output color
}
Input {
//all the node inputs
//<glslType> <varName>
vec4 inColor
vec3 normal
}
Output {
//all the node outputs
//<glslType> <varName>
vec4 outColor
}
}
}

@ -0,0 +1,9 @@
void main(){
vec4 dark = inColor * 0.3;
vec4 bright = min(inColor * 4.0, 1.0);
normal = normalize(normal);
vec3 dir = vec3(0,0,1);
float factor = dot(dir, normal);
outColor = mix(dark, bright, factor);
}

@ -0,0 +1,112 @@
package jme3test.model.anim;
import com.jme3.animation.*;
import com.jme3.app.ChaseCameraAppState;
import com.jme3.app.SimpleApplication;
import com.jme3.light.DirectionalLight;
import com.jme3.material.Material;
import com.jme3.math.*;
import com.jme3.scene.*;
import com.jme3.scene.debug.custom.ArmatureDebugAppState;
import com.jme3.util.TangentBinormalGenerator;
/**
* Created by Nehon on 18/12/2017.
*/
public class TestArmature extends SimpleApplication {
Joint j1;
Joint j2;
public static void main(String... argv) {
TestArmature app = new TestArmature();
app.start();
}
@Override
public void simpleInitApp() {
renderManager.setSinglePassLightBatchSize(2);
//cam.setFrustumPerspective(90f, (float) cam.getWidth() / cam.getHeight(), 0.01f, 10f);
viewPort.setBackgroundColor(ColorRGBA.DarkGray);
Joint root = new Joint("Root_Joint");
j1 = new Joint("Joint_1");
j2 = new Joint("Joint_2");
root.addChild(j1);
j1.addChild(j2);
j1.setLocalTranslation(new Vector3f(0, 0.5f, 0));
j1.setLocalRotation(new Quaternion().fromAngleAxis(FastMath.HALF_PI * 0.3f, Vector3f.UNIT_Z));
j2.setLocalTranslation(new Vector3f(0, 0.2f, 0));
Joint[] joints = new Joint[]{root, j1, j2};
Armature armature = new Armature(joints);
armature.setBindPose();
ArmatureControl ac = new ArmatureControl(armature);
Node node = new Node("Test Armature");
rootNode.attachChild(node);
node.addControl(ac);
ArmatureDebugAppState debugAppState = new ArmatureDebugAppState();
debugAppState.addArmature(ac, true);
stateManager.attach(debugAppState);
rootNode.addLight(new DirectionalLight(new Vector3f(-1f, -1f, -1f).normalizeLocal()));
rootNode.addLight(new DirectionalLight(new Vector3f(1f, 1f, 1f).normalizeLocal(), new ColorRGBA(0.7f, 0.7f, 0.7f, 1.0f)));
flyCam.setEnabled(false);
ChaseCameraAppState chaseCam = new ChaseCameraAppState();
chaseCam.setTarget(node);
getStateManager().attach(chaseCam);
chaseCam.setInvertHorizontalAxis(true);
chaseCam.setInvertVerticalAxis(true);
chaseCam.setZoomSpeed(0.5f);
chaseCam.setMinVerticalRotation(-FastMath.HALF_PI);
chaseCam.setRotationSpeed(3);
chaseCam.setDefaultDistance(3);
chaseCam.setMinDistance(0.01f);
chaseCam.setZoomSpeed(0.01f);
chaseCam.setDefaultVerticalRotation(0.3f);
}
private void displayNormals(Spatial s) {
final Node debugTangents = new Node("debug tangents");
debugTangents.setCullHint(Spatial.CullHint.Never);
rootNode.attachChild(debugTangents);
final Material debugMat = assetManager.loadMaterial("Common/Materials/VertexColor.j3m");
debugMat.getAdditionalRenderState().setLineWidth(2);
s.depthFirstTraversal(new SceneGraphVisitorAdapter() {
@Override
public void visit(Geometry g) {
Mesh m = g.getMesh();
Geometry debug = new Geometry(
"debug tangents geom",
TangentBinormalGenerator.genNormalLines(m, 0.1f)
);
debug.setMaterial(debugMat);
debug.setCullHint(Spatial.CullHint.Never);
debug.setLocalTransform(g.getWorldTransform());
debugTangents.attachChild(debug);
}
});
}
float time = 0;
@Override
public void simpleUpdate(float tpf) {
time += tpf;
float rot = FastMath.sin(time);
j1.setLocalRotation(new Quaternion().fromAngleAxis(FastMath.HALF_PI * rot, Vector3f.UNIT_Z));
j2.setLocalRotation(new Quaternion().fromAngleAxis(FastMath.HALF_PI * rot, Vector3f.UNIT_Z));
}
}
Loading…
Cancel
Save