- unify native jmePhysicsSpace for android and desktop

git-svn-id: https://jmonkeyengine.googlecode.com/svn/trunk@8852 75d07b2b-3a1a-0410-a2c5-0572b91ccdca
3.0
nor..67 13 years ago
parent d0f1b21f4c
commit 3f8ee953ed
  1. 273
      engine/src/bullet-native/android/jmePhysicsSpace.cpp
  2. 4
      engine/src/bullet-native/jmePhysicsSpace.cpp

@ -1,273 +0,0 @@
/*
* Copyright (c) 2009-2010 jMonkeyEngine
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of 'jMonkeyEngine' nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "jmePhysicsSpace.h"
#include "jmeBulletUtil.h"
#include <stdio.h>
/**
* Author: Normen Hansen
*/
jmePhysicsSpace::jmePhysicsSpace(JNIEnv* env, jobject javaSpace) {
//TODO: global ref? maybe not -> cleaning, rather callback class?
this->javaPhysicsSpace = env->NewWeakGlobalRef(javaSpace);
this->env = env;
env->GetJavaVM(&vm);
if (env->ExceptionCheck()) {
env->Throw(env->ExceptionOccurred());
return;
}
}
void jmePhysicsSpace::attachThread() {
#ifdef JNI_VERSION_1_2
vm->AttachCurrentThread((JNIEnv**) &env, NULL);
#else
vm->AttachCurrentThread(&env, NULL);
#endif
}
JNIEnv* jmePhysicsSpace::getEnv() {
attachThread();
return this->env;
}
void jmePhysicsSpace::stepSimulation(jfloat tpf, jint maxSteps, jfloat accuracy) {
dynamicsWorld->stepSimulation(tpf, maxSteps, accuracy);
}
btThreadSupportInterface* jmePhysicsSpace::createSolverThreadSupport(int maxNumThreads) {
#ifdef _WIN32
Win32ThreadSupport::Win32ThreadConstructionInfo threadConstructionInfo("solverThreads", SolverThreadFunc, SolverlsMemoryFunc, maxNumThreads);
Win32ThreadSupport* threadSupport = new Win32ThreadSupport(threadConstructionInfo);
threadSupport->startSPU();
#elif defined (USE_PTHREADS)
PosixThreadSupport::ThreadConstructionInfo constructionInfo("collision", SolverThreadFunc,
SolverlsMemoryFunc, maxNumThreads);
PosixThreadSupport* threadSupport = new PosixThreadSupport(constructionInfo);
threadSupport->startSPU();
#else
SequentialThreadSupport::SequentialThreadConstructionInfo tci("solverThreads", SolverThreadFunc, SolverlsMemoryFunc);
SequentialThreadSupport* threadSupport = new SequentialThreadSupport(tci);
threadSupport->startSPU();
#endif
return threadSupport;
}
btThreadSupportInterface* jmePhysicsSpace::createDispatchThreadSupport(int maxNumThreads) {
#ifdef _WIN32
Win32ThreadSupport::Win32ThreadConstructionInfo threadConstructionInfo("solverThreads", processCollisionTask, createCollisionLocalStoreMemory, maxNumThreads);
Win32ThreadSupport* threadSupport = new Win32ThreadSupport(threadConstructionInfo);
threadSupport->startSPU();
#elif defined (USE_PTHREADS)
PosixThreadSupport::ThreadConstructionInfo solverConstructionInfo("solver", processCollisionTask,
createCollisionLocalStoreMemory, maxNumThreads);
PosixThreadSupport* threadSupport = new PosixThreadSupport(solverConstructionInfo);
threadSupport->startSPU();
#else
SequentialThreadSupport::SequentialThreadConstructionInfo tci("solverThreads", processCollisionTask, createCollisionLocalStoreMemory);
SequentialThreadSupport* threadSupport = new SequentialThreadSupport(tci);
threadSupport->startSPU();
#endif
return threadSupport;
}
void jmePhysicsSpace::createPhysicsSpace(jfloat minX, jfloat minY, jfloat minZ, jfloat maxX, jfloat maxY, jfloat maxZ, jint broadphaseId, jboolean threading) {
// collision configuration contains default setup for memory, collision setup
btDefaultCollisionConstructionInfo cci;
// if(threading){
// cci.m_defaultMaxPersistentManifoldPoolSize = 32768;
// }
btCollisionConfiguration* collisionConfiguration = new btDefaultCollisionConfiguration(cci);
btVector3 min = btVector3(minX, minY, minZ);
btVector3 max = btVector3(maxX, maxY, maxZ);
btBroadphaseInterface* broadphase;
switch (broadphaseId) {
case 0:
broadphase = new btSimpleBroadphase();
break;
case 1:
broadphase = new btAxisSweep3(min, max);
break;
case 2:
//TODO: 32bit!
broadphase = new btAxisSweep3(min, max);
break;
case 3:
broadphase = new btDbvtBroadphase();
break;
case 4:
// broadphase = new btGpu3DGridBroadphase(
// min, max,
// 20, 20, 20,
// 10000, 1000, 25);
break;
}
btCollisionDispatcher* dispatcher;
btConstraintSolver* solver;
// use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded)
if (threading) {
btThreadSupportInterface* dispatchThreads = createDispatchThreadSupport(4);
dispatcher = new SpuGatheringCollisionDispatcher(dispatchThreads, 4, collisionConfiguration);
dispatcher->setDispatcherFlags(btCollisionDispatcher::CD_DISABLE_CONTACTPOOL_DYNAMIC_ALLOCATION);
} else {
dispatcher = new btCollisionDispatcher(collisionConfiguration);
}
// the default constraint solver. For parallel processing you can use a different solver (see Extras/BulletMultiThreaded)
if (threading) {
btThreadSupportInterface* solverThreads = createSolverThreadSupport(4);
solver = new btParallelConstraintSolver(solverThreads);
} else {
solver = new btSequentialImpulseConstraintSolver;
}
//create dynamics world
btDiscreteDynamicsWorld* world = new btDiscreteDynamicsWorld(dispatcher, broadphase, solver, collisionConfiguration);
dynamicsWorld = world;
dynamicsWorld->setWorldUserInfo(this);
//parallel solver requires the contacts to be in a contiguous pool, so avoid dynamic allocation
if (threading) {
world->getSimulationIslandManager()->setSplitIslands(false);
world->getSolverInfo().m_numIterations = 4;
world->getSolverInfo().m_solverMode = SOLVER_SIMD + SOLVER_USE_WARMSTARTING; //+SOLVER_RANDMIZE_ORDER;
world->getDispatchInfo().m_enableSPU = true;
}
broadphase->getOverlappingPairCache()->setInternalGhostPairCallback(new btGhostPairCallback());
dynamicsWorld->setGravity(btVector3(0, -9.81f, 0));
struct jmeFilterCallback : public btOverlapFilterCallback {
// return true when pairs need collision
virtual bool needBroadphaseCollision(btBroadphaseProxy* proxy0, btBroadphaseProxy * proxy1) const {
// bool collides = (proxy0->m_collisionFilterGroup & proxy1->m_collisionFilterMask) != 0;
// collides = collides && (proxy1->m_collisionFilterGroup & proxy0->m_collisionFilterMask);
bool collides = (proxy0->m_collisionFilterGroup & proxy1->m_collisionFilterMask) != 0;
collides = collides && (proxy1->m_collisionFilterGroup & proxy0->m_collisionFilterMask);
if (collides) {
btCollisionObject* co0 = (btCollisionObject*) proxy0->m_clientObject;
btCollisionObject* co1 = (btCollisionObject*) proxy1->m_clientObject;
jmeUserPointer *up0 = (jmeUserPointer*) co0 -> getUserPointer();
jmeUserPointer *up1 = (jmeUserPointer*) co1 -> getUserPointer();
if (up0 != NULL && up1 != NULL) {
collides = (up0->group & up1->groups) != 0;
collides = collides && (up1->group & up0->groups);
//add some additional logic here that modified 'collides'
return collides;
}
return false;
}
return collides;
}
};
dynamicsWorld->getPairCache()->setOverlapFilterCallback(new jmeFilterCallback());
dynamicsWorld->setInternalTickCallback(&jmePhysicsSpace::preTickCallback, static_cast<void *> (this), true);
dynamicsWorld->setInternalTickCallback(&jmePhysicsSpace::postTickCallback, static_cast<void *> (this));
if (gContactProcessedCallback == NULL) {
gContactProcessedCallback = &jmePhysicsSpace::contactProcessedCallback;
}
}
void jmePhysicsSpace::preTickCallback(btDynamicsWorld *world, btScalar timeStep) {
jmePhysicsSpace* dynamicsWorld = (jmePhysicsSpace*) world->getWorldUserInfo();
JNIEnv* env = dynamicsWorld->getEnv();
jobject javaPhysicsSpace = env->NewLocalRef(dynamicsWorld->getJavaPhysicsSpace());
if (javaPhysicsSpace != NULL) {
env->CallVoidMethod(javaPhysicsSpace, jmeClasses::PhysicsSpace_preTick, timeStep);
env->DeleteLocalRef(javaPhysicsSpace);
if (env->ExceptionCheck()) {
env->Throw(env->ExceptionOccurred());
return;
}
}
}
void jmePhysicsSpace::postTickCallback(btDynamicsWorld *world, btScalar timeStep) {
jmePhysicsSpace* dynamicsWorld = (jmePhysicsSpace*) world->getWorldUserInfo();
JNIEnv* env = dynamicsWorld->getEnv();
jobject javaPhysicsSpace = env->NewLocalRef(dynamicsWorld->getJavaPhysicsSpace());
if (javaPhysicsSpace != NULL) {
env->CallVoidMethod(javaPhysicsSpace, jmeClasses::PhysicsSpace_postTick, timeStep);
env->DeleteLocalRef(javaPhysicsSpace);
if (env->ExceptionCheck()) {
env->Throw(env->ExceptionOccurred());
return;
}
}
}
bool jmePhysicsSpace::contactProcessedCallback(btManifoldPoint &cp, void *body0, void *body1) {
// printf("contactProcessedCallback %d %dn", body0, body1);
btCollisionObject* co0 = (btCollisionObject*) body0;
jmeUserPointer *up0 = (jmeUserPointer*) co0 -> getUserPointer();
btCollisionObject* co1 = (btCollisionObject*) body1;
jmeUserPointer *up1 = (jmeUserPointer*) co1 -> getUserPointer();
if (up0 != NULL) {
jmePhysicsSpace *dynamicsWorld = (jmePhysicsSpace *)up0->space;
if (dynamicsWorld != NULL) {
JNIEnv* env = dynamicsWorld->getEnv();
jobject javaPhysicsSpace = env->NewLocalRef(dynamicsWorld->getJavaPhysicsSpace());
if (javaPhysicsSpace != NULL) {
jobject javaCollisionObject0 = env->NewLocalRef(up0->javaCollisionObject);
jobject javaCollisionObject1 = env->NewLocalRef(up1->javaCollisionObject);
env->CallVoidMethod(javaPhysicsSpace, jmeClasses::PhysicsSpace_addCollisionEvent, javaCollisionObject0, javaCollisionObject1, (jlong) & cp);
env->DeleteLocalRef(javaPhysicsSpace);
env->DeleteLocalRef(javaCollisionObject0);
env->DeleteLocalRef(javaCollisionObject1);
if (env->ExceptionCheck()) {
env->Throw(env->ExceptionOccurred());
return true;
}
}
}
}
return true;
}
btDynamicsWorld* jmePhysicsSpace::getDynamicsWorld() {
return dynamicsWorld;
}
jobject jmePhysicsSpace::getJavaPhysicsSpace() {
return javaPhysicsSpace;
}
jmePhysicsSpace::~jmePhysicsSpace() {
delete(dynamicsWorld);
}

@ -48,7 +48,9 @@ jmePhysicsSpace::jmePhysicsSpace(JNIEnv* env, jobject javaSpace) {
}
void jmePhysicsSpace::attachThread() {
#ifdef JNI_VERSION_1_2
#ifdef ANDROID
vm->AttachCurrentThread((JNIEnv**) &env, NULL);
#elif defined (JNI_VERSION_1_2)
vm->AttachCurrentThread((void**) &env, NULL);
#else
vm->AttachCurrentThread(&env, NULL);

Loading…
Cancel
Save