parent
7caa81beac
commit
e78e77b9b9
Binary file not shown.
@ -0,0 +1,50 @@ |
|||||||
|
#include <stdio.h> |
||||||
|
#include "utils.h" |
||||||
|
|
||||||
|
/*
|
||||||
|
The following iterative sequence is defined for the set of positive integers: |
||||||
|
|
||||||
|
n → n/2 (n is even) |
||||||
|
n → 3n + 1 (n is odd) |
||||||
|
|
||||||
|
Using the rule above and starting with 13, we generate the following sequence: |
||||||
|
13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1 |
||||||
|
|
||||||
|
It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1. |
||||||
|
|
||||||
|
Which starting number, under one million, produces the longest chain? |
||||||
|
|
||||||
|
NOTE: Once the chain starts the terms are allowed to go above one million. |
||||||
|
|
||||||
|
|
||||||
|
https://projecteuler.net/problem=14
|
||||||
|
*/ |
||||||
|
|
||||||
|
int main(int argc,char**argv) { |
||||||
|
int maxChain=0; |
||||||
|
long maxNumb=0; |
||||||
|
int counter=1; |
||||||
|
while (counter<1000000) { |
||||||
|
//printf("Calculating %d...\n",counter);
|
||||||
|
long numb=counter; |
||||||
|
int chainCount=0; |
||||||
|
while (numb!=1) { |
||||||
|
if (numb%2==0) { |
||||||
|
numb/=2; |
||||||
|
} else { |
||||||
|
numb=3*numb+1; |
||||||
|
} |
||||||
|
chainCount++; |
||||||
|
//printf("%d>",numb);
|
||||||
|
} |
||||||
|
if (chainCount>maxChain) { |
||||||
|
maxChain=chainCount; |
||||||
|
maxNumb=counter; |
||||||
|
printf("Max chain is now %d (%d)...\n",maxChain,maxNumb); |
||||||
|
} |
||||||
|
counter++; |
||||||
|
} |
||||||
|
printf("\n\nMax chain count is %d for number %d\n",maxChain,maxNumb); |
||||||
|
|
||||||
|
return 0; |
||||||
|
} |
@ -0,0 +1,7 @@ |
|||||||
|
#define true 1 |
||||||
|
#define false 0 |
||||||
|
#define boolean char |
||||||
|
struct String{ |
||||||
|
int length; |
||||||
|
char*str; |
||||||
|
}; |
@ -1,261 +1,50 @@ |
|||||||
#include <stdio.h> |
#include <stdio.h> |
||||||
#include <stdlib.h> |
|
||||||
#include "utils.h" |
#include "utils.h" |
||||||
|
|
||||||
/*
|
/*
|
||||||
Work out the first ten digits of the sum of the following one-hundred 50-digit numbers. |
The following iterative sequence is defined for the set of positive integers: |
||||||
|
|
||||||
37107287533902102798797998220837590246510135740250 |
n → n/2 (n is even) |
||||||
46376937677490009712648124896970078050417018260538 |
n → 3n + 1 (n is odd) |
||||||
74324986199524741059474233309513058123726617309629 |
|
||||||
91942213363574161572522430563301811072406154908250 |
|
||||||
23067588207539346171171980310421047513778063246676 |
|
||||||
89261670696623633820136378418383684178734361726757 |
|
||||||
28112879812849979408065481931592621691275889832738 |
|
||||||
44274228917432520321923589422876796487670272189318 |
|
||||||
47451445736001306439091167216856844588711603153276 |
|
||||||
70386486105843025439939619828917593665686757934951 |
|
||||||
62176457141856560629502157223196586755079324193331 |
|
||||||
64906352462741904929101432445813822663347944758178 |
|
||||||
92575867718337217661963751590579239728245598838407 |
|
||||||
58203565325359399008402633568948830189458628227828 |
|
||||||
80181199384826282014278194139940567587151170094390 |
|
||||||
35398664372827112653829987240784473053190104293586 |
|
||||||
86515506006295864861532075273371959191420517255829 |
|
||||||
71693888707715466499115593487603532921714970056938 |
|
||||||
54370070576826684624621495650076471787294438377604 |
|
||||||
53282654108756828443191190634694037855217779295145 |
|
||||||
36123272525000296071075082563815656710885258350721 |
|
||||||
45876576172410976447339110607218265236877223636045 |
|
||||||
17423706905851860660448207621209813287860733969412 |
|
||||||
81142660418086830619328460811191061556940512689692 |
|
||||||
51934325451728388641918047049293215058642563049483 |
|
||||||
62467221648435076201727918039944693004732956340691 |
|
||||||
15732444386908125794514089057706229429197107928209 |
|
||||||
55037687525678773091862540744969844508330393682126 |
|
||||||
18336384825330154686196124348767681297534375946515 |
|
||||||
80386287592878490201521685554828717201219257766954 |
|
||||||
78182833757993103614740356856449095527097864797581 |
|
||||||
16726320100436897842553539920931837441497806860984 |
|
||||||
48403098129077791799088218795327364475675590848030 |
|
||||||
87086987551392711854517078544161852424320693150332 |
|
||||||
59959406895756536782107074926966537676326235447210 |
|
||||||
69793950679652694742597709739166693763042633987085 |
|
||||||
41052684708299085211399427365734116182760315001271 |
|
||||||
65378607361501080857009149939512557028198746004375 |
|
||||||
35829035317434717326932123578154982629742552737307 |
|
||||||
94953759765105305946966067683156574377167401875275 |
|
||||||
88902802571733229619176668713819931811048770190271 |
|
||||||
25267680276078003013678680992525463401061632866526 |
|
||||||
36270218540497705585629946580636237993140746255962 |
|
||||||
24074486908231174977792365466257246923322810917141 |
|
||||||
91430288197103288597806669760892938638285025333403 |
|
||||||
34413065578016127815921815005561868836468420090470 |
|
||||||
23053081172816430487623791969842487255036638784583 |
|
||||||
11487696932154902810424020138335124462181441773470 |
|
||||||
63783299490636259666498587618221225225512486764533 |
|
||||||
67720186971698544312419572409913959008952310058822 |
|
||||||
95548255300263520781532296796249481641953868218774 |
|
||||||
76085327132285723110424803456124867697064507995236 |
|
||||||
37774242535411291684276865538926205024910326572967 |
|
||||||
23701913275725675285653248258265463092207058596522 |
|
||||||
29798860272258331913126375147341994889534765745501 |
|
||||||
18495701454879288984856827726077713721403798879715 |
|
||||||
38298203783031473527721580348144513491373226651381 |
|
||||||
34829543829199918180278916522431027392251122869539 |
|
||||||
40957953066405232632538044100059654939159879593635 |
|
||||||
29746152185502371307642255121183693803580388584903 |
|
||||||
41698116222072977186158236678424689157993532961922 |
|
||||||
62467957194401269043877107275048102390895523597457 |
|
||||||
23189706772547915061505504953922979530901129967519 |
|
||||||
86188088225875314529584099251203829009407770775672 |
|
||||||
11306739708304724483816533873502340845647058077308 |
|
||||||
82959174767140363198008187129011875491310547126581 |
|
||||||
97623331044818386269515456334926366572897563400500 |
|
||||||
42846280183517070527831839425882145521227251250327 |
|
||||||
55121603546981200581762165212827652751691296897789 |
|
||||||
32238195734329339946437501907836945765883352399886 |
|
||||||
75506164965184775180738168837861091527357929701337 |
|
||||||
62177842752192623401942399639168044983993173312731 |
|
||||||
32924185707147349566916674687634660915035914677504 |
|
||||||
99518671430235219628894890102423325116913619626622 |
|
||||||
73267460800591547471830798392868535206946944540724 |
|
||||||
76841822524674417161514036427982273348055556214818 |
|
||||||
97142617910342598647204516893989422179826088076852 |
|
||||||
87783646182799346313767754307809363333018982642090 |
|
||||||
10848802521674670883215120185883543223812876952786 |
|
||||||
71329612474782464538636993009049310363619763878039 |
|
||||||
62184073572399794223406235393808339651327408011116 |
|
||||||
66627891981488087797941876876144230030984490851411 |
|
||||||
60661826293682836764744779239180335110989069790714 |
|
||||||
85786944089552990653640447425576083659976645795096 |
|
||||||
66024396409905389607120198219976047599490197230297 |
|
||||||
64913982680032973156037120041377903785566085089252 |
|
||||||
16730939319872750275468906903707539413042652315011 |
|
||||||
94809377245048795150954100921645863754710598436791 |
|
||||||
78639167021187492431995700641917969777599028300699 |
|
||||||
15368713711936614952811305876380278410754449733078 |
|
||||||
40789923115535562561142322423255033685442488917353 |
|
||||||
44889911501440648020369068063960672322193204149535 |
|
||||||
41503128880339536053299340368006977710650566631954 |
|
||||||
81234880673210146739058568557934581403627822703280 |
|
||||||
82616570773948327592232845941706525094512325230608 |
|
||||||
22918802058777319719839450180888072429661980811197 |
|
||||||
77158542502016545090413245809786882778948721859617 |
|
||||||
72107838435069186155435662884062257473692284509516 |
|
||||||
20849603980134001723930671666823555245252804609722 |
|
||||||
53503534226472524250874054075591789781264330331690 |
|
||||||
|
|
||||||
https://projecteuler.net/problem=13
|
Using the rule above and starting with 13, we generate the following sequence: |
||||||
*/ |
13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1 |
||||||
|
|
||||||
char*getSum(char*sum) { |
It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1. |
||||||
char*newStr=malloc(52+1); |
|
||||||
for (int i=0;i<52;i++) { |
|
||||||
newStr[i]=sum[i]+'0'; |
|
||||||
} |
|
||||||
newStr[52]='\0'; |
|
||||||
return newStr; |
|
||||||
} |
|
||||||
|
|
||||||
int main(int argc,char**argv) { |
Which starting number, under one million, produces the longest chain? |
||||||
char*vals[]={ |
|
||||||
"37107287533902102798797998220837590246510135740250", |
|
||||||
"46376937677490009712648124896970078050417018260538", |
|
||||||
"74324986199524741059474233309513058123726617309629", |
|
||||||
"91942213363574161572522430563301811072406154908250", |
|
||||||
"23067588207539346171171980310421047513778063246676", |
|
||||||
"89261670696623633820136378418383684178734361726757", |
|
||||||
"28112879812849979408065481931592621691275889832738", |
|
||||||
"44274228917432520321923589422876796487670272189318", |
|
||||||
"47451445736001306439091167216856844588711603153276", |
|
||||||
"70386486105843025439939619828917593665686757934951", |
|
||||||
"62176457141856560629502157223196586755079324193331", |
|
||||||
"64906352462741904929101432445813822663347944758178", |
|
||||||
"92575867718337217661963751590579239728245598838407", |
|
||||||
"58203565325359399008402633568948830189458628227828", |
|
||||||
"80181199384826282014278194139940567587151170094390", |
|
||||||
"35398664372827112653829987240784473053190104293586", |
|
||||||
"86515506006295864861532075273371959191420517255829", |
|
||||||
"71693888707715466499115593487603532921714970056938", |
|
||||||
"54370070576826684624621495650076471787294438377604", |
|
||||||
"53282654108756828443191190634694037855217779295145", |
|
||||||
"36123272525000296071075082563815656710885258350721", |
|
||||||
"45876576172410976447339110607218265236877223636045", |
|
||||||
"17423706905851860660448207621209813287860733969412", |
|
||||||
"81142660418086830619328460811191061556940512689692", |
|
||||||
"51934325451728388641918047049293215058642563049483", |
|
||||||
"62467221648435076201727918039944693004732956340691", |
|
||||||
"15732444386908125794514089057706229429197107928209", |
|
||||||
"55037687525678773091862540744969844508330393682126", |
|
||||||
"18336384825330154686196124348767681297534375946515", |
|
||||||
"80386287592878490201521685554828717201219257766954", |
|
||||||
"78182833757993103614740356856449095527097864797581", |
|
||||||
"16726320100436897842553539920931837441497806860984", |
|
||||||
"48403098129077791799088218795327364475675590848030", |
|
||||||
"87086987551392711854517078544161852424320693150332", |
|
||||||
"59959406895756536782107074926966537676326235447210", |
|
||||||
"69793950679652694742597709739166693763042633987085", |
|
||||||
"41052684708299085211399427365734116182760315001271", |
|
||||||
"65378607361501080857009149939512557028198746004375", |
|
||||||
"35829035317434717326932123578154982629742552737307", |
|
||||||
"94953759765105305946966067683156574377167401875275", |
|
||||||
"88902802571733229619176668713819931811048770190271", |
|
||||||
"25267680276078003013678680992525463401061632866526", |
|
||||||
"36270218540497705585629946580636237993140746255962", |
|
||||||
"24074486908231174977792365466257246923322810917141", |
|
||||||
"91430288197103288597806669760892938638285025333403", |
|
||||||
"34413065578016127815921815005561868836468420090470", |
|
||||||
"23053081172816430487623791969842487255036638784583", |
|
||||||
"11487696932154902810424020138335124462181441773470", |
|
||||||
"63783299490636259666498587618221225225512486764533", |
|
||||||
"67720186971698544312419572409913959008952310058822", |
|
||||||
"95548255300263520781532296796249481641953868218774", |
|
||||||
"76085327132285723110424803456124867697064507995236", |
|
||||||
"37774242535411291684276865538926205024910326572967", |
|
||||||
"23701913275725675285653248258265463092207058596522", |
|
||||||
"29798860272258331913126375147341994889534765745501", |
|
||||||
"18495701454879288984856827726077713721403798879715", |
|
||||||
"38298203783031473527721580348144513491373226651381", |
|
||||||
"34829543829199918180278916522431027392251122869539", |
|
||||||
"40957953066405232632538044100059654939159879593635", |
|
||||||
"29746152185502371307642255121183693803580388584903", |
|
||||||
"41698116222072977186158236678424689157993532961922", |
|
||||||
"62467957194401269043877107275048102390895523597457", |
|
||||||
"23189706772547915061505504953922979530901129967519", |
|
||||||
"86188088225875314529584099251203829009407770775672", |
|
||||||
"11306739708304724483816533873502340845647058077308", |
|
||||||
"82959174767140363198008187129011875491310547126581", |
|
||||||
"97623331044818386269515456334926366572897563400500", |
|
||||||
"42846280183517070527831839425882145521227251250327", |
|
||||||
"55121603546981200581762165212827652751691296897789", |
|
||||||
"32238195734329339946437501907836945765883352399886", |
|
||||||
"75506164965184775180738168837861091527357929701337", |
|
||||||
"62177842752192623401942399639168044983993173312731", |
|
||||||
"32924185707147349566916674687634660915035914677504", |
|
||||||
"99518671430235219628894890102423325116913619626622", |
|
||||||
"73267460800591547471830798392868535206946944540724", |
|
||||||
"76841822524674417161514036427982273348055556214818", |
|
||||||
"97142617910342598647204516893989422179826088076852", |
|
||||||
"87783646182799346313767754307809363333018982642090", |
|
||||||
"10848802521674670883215120185883543223812876952786", |
|
||||||
"71329612474782464538636993009049310363619763878039", |
|
||||||
"62184073572399794223406235393808339651327408011116", |
|
||||||
"66627891981488087797941876876144230030984490851411", |
|
||||||
"60661826293682836764744779239180335110989069790714", |
|
||||||
"85786944089552990653640447425576083659976645795096", |
|
||||||
"66024396409905389607120198219976047599490197230297", |
|
||||||
"64913982680032973156037120041377903785566085089252", |
|
||||||
"16730939319872750275468906903707539413042652315011", |
|
||||||
"94809377245048795150954100921645863754710598436791", |
|
||||||
"78639167021187492431995700641917969777599028300699", |
|
||||||
"15368713711936614952811305876380278410754449733078", |
|
||||||
"40789923115535562561142322423255033685442488917353", |
|
||||||
"44889911501440648020369068063960672322193204149535", |
|
||||||
"41503128880339536053299340368006977710650566631954", |
|
||||||
"81234880673210146739058568557934581403627822703280", |
|
||||||
"82616570773948327592232845941706525094512325230608", |
|
||||||
"22918802058777319719839450180888072429661980811197", |
|
||||||
"77158542502016545090413245809786882778948721859617", |
|
||||||
"72107838435069186155435662884062257473692284509516", |
|
||||||
"20849603980134001723930671666823555245252804609722", |
|
||||||
"53503534226472524250874054075591789781264330331690", |
|
||||||
}; |
|
||||||
|
|
||||||
//We need up to 52 digits of space for adding 100 50-digit numbers (max sum of one place value converges up to 1000 exclusive meaning we can expect up to 999.)
|
NOTE: Once the chain starts the terms are allowed to go above one million. |
||||||
char sum[52]={}; |
|
||||||
|
|
||||||
for (int i=49;i>=0;i--) { |
|
||||||
int s=0; |
https://projecteuler.net/problem=14
|
||||||
for (int j=0;j<100;j++) { |
*/ |
||||||
s+=vals[j][i]-'0'; |
|
||||||
printf("s is %d ",s); |
int main(int argc,char**argv) { |
||||||
} |
int maxChain=0; |
||||||
int marker=i; |
long maxNumb=0; |
||||||
printf("\ns starting at %d\n",s); |
int counter=1; |
||||||
while (s>0) { |
while (counter<1000000) { |
||||||
if (s%10+sum[marker+2]<10){ |
//printf("Calculating %d...\n",counter);
|
||||||
sum[marker+2]=s%10+sum[marker+2]; |
long numb=counter; |
||||||
|
int chainCount=0; |
||||||
|
while (numb!=1) { |
||||||
|
if (numb%2==0) { |
||||||
|
numb/=2; |
||||||
} else { |
} else { |
||||||
s+=10*((sum[marker+2]+s%10)/10); |
numb=3*numb+1; |
||||||
sum[marker+2]=(sum[marker+2]+s%10)%10; |
|
||||||
} |
} |
||||||
s/=10; |
chainCount++; |
||||||
char*val=getSum(sum); |
//printf("%d>",numb);
|
||||||
printf("\n...s:%d (%s)",s,val); |
|
||||||
free(val); |
|
||||||
marker--; |
|
||||||
} |
} |
||||||
|
if (chainCount>maxChain) { |
||||||
|
maxChain=chainCount; |
||||||
|
maxNumb=counter; |
||||||
|
printf("Max chain is now %d (%d)...\n",maxChain,maxNumb); |
||||||
|
} |
||||||
|
counter++; |
||||||
} |
} |
||||||
|
printf("\n\nMax chain count is %d for number %d\n",maxChain,maxNumb); |
||||||
char*val=getSum(sum); |
|
||||||
printf("\n\nSum is %s",val); |
|
||||||
printf("\nFirst ten digits: "); |
|
||||||
for (int i=0;i<10;i++) { |
|
||||||
printf("%c",val[i]); |
|
||||||
} |
|
||||||
printf("\n"); |
|
||||||
free(val); |
|
||||||
|
|
||||||
return 0; |
return 0; |
||||||
} |
} |
Loading…
Reference in new issue