The official distribution of olcConsoleGameEngine, a tool used in javidx9's YouTube videos and projects
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
videos/worms/OneLoneCoder_Worms3.cpp

1226 lines
35 KiB

/*
OneLoneCoder.com - Code-It-Yourself! Worms Part #3
"stuuup-iid...." - @Javidx9
Disclaimer
~~~~~~~~~~
I don't care what you use this for. It's intended to be educational, and perhaps
to the oddly minded - a little bit of fun. Please hack this, change it and use it
in any way you see fit. BUT, you acknowledge that I am not responsible for anything
bad that happens as a result of your actions. However, if good stuff happens, I
would appreciate a shout out, or at least give the blog some publicity for me.
Cheers!
Background
~~~~~~~~~~
Worms is a classic game where several teams of worms use a variety of weaponry
to elimiate each other from a randomly generated terrain.
This code is the third part of a series that show how to make your own Worms game
from scratch in C++!
Controls A = Aim Left, S = Aim Right, Z = Jump, Space = Charge Weapon, TAB = Zoom
Author
~~~~~~
Twitter: @javidx9
Blog: www.onelonecoder.com
Video:
~~~~~~
Part #1 https://youtu.be/EHlaJvQpW3U
Part #2 https://youtu.be/pV2qYJjCdxM
Part #3 https://youtu.be/NKK5tIRZqyQ
Last Updated: 19/12/2017
*/
#include <iostream>
#include <string>
#include <algorithm>
using namespace std;
#include "olcConsoleGameEngine.h"
class cPhysicsObject
{
public:
cPhysicsObject(float x = 0.0f, float y = 0.0f)
{
px = x;
py = y;
}
public:
float px = 0.0f; // Position
float py = 0.0f;
float vx = 0.0f; // Velocity
float vy = 0.0f;
float ax = 0.0f; // Acceleration
float ay = 0.0f;
float radius = 4.0f; // Bounding rectangle for collisions
float fFriction = 0.0f; // Actually, a dampening factor is a more accurate name
int nBounceBeforeDeath = -1; // How many time object can bounce before death
bool bDead; // Flag to indicate object should be removed
bool bStable = false; // Has object stopped moving
// Make class abstract
virtual void Draw(olcConsoleGameEngine *engine, float fOffsetX, float fOffsetY, bool bPixel = false) = 0;
virtual int BounceDeathAction() = 0;
virtual bool Damage(float d) = 0;
};
class cDebris : public cPhysicsObject // a small rock that bounces
{
public:
cDebris(float x = 0.0f, float y = 0.0f) : cPhysicsObject(x, y)
{
// Set velocity to random direction and size for "boom" effect
vx = 10.0f * cosf(((float)rand() / (float)RAND_MAX) * 2.0f * 3.14159f);
vy = 10.0f * sinf(((float)rand() / (float)RAND_MAX) * 2.0f * 3.14159f);
radius = 1.0f;
fFriction = 0.8f;
bDead = false;
bStable = false;
nBounceBeforeDeath = 2; // After 2 bounces, dispose
}
virtual void Draw(olcConsoleGameEngine *engine, float fOffsetX, float fOffsetY, bool bPixel = false)
{
engine->DrawWireFrameModel(vecModel, px - fOffsetX, py - fOffsetY, atan2f(vy, vx), bPixel ? 0.5f : radius, FG_DARK_GREEN);
}
virtual int BounceDeathAction()
{
return 0; // Nothing, just fade
}
virtual bool Damage(float d)
{
return true; // Cannot be damaged
}
private:
static vector<pair<float, float>> vecModel;
};
vector<pair<float, float>> DefineDebris()
{
// A small unit rectangle
vector<pair<float, float>> vecModel;
vecModel.push_back({ 0.0f, 0.0f });
vecModel.push_back({ 1.0f, 0.0f });
vecModel.push_back({ 1.0f, 1.0f });
vecModel.push_back({ 0.0f, 1.0f });
return vecModel;
}
vector<pair<float, float>> cDebris::vecModel = DefineDebris();
class cMissile : public cPhysicsObject // A projectile weapon
{
public:
cMissile(float x = 0.0f, float y = 0.0f, float _vx = 0.0f, float _vy = 0.0f) : cPhysicsObject(x, y)
{
radius = 2.5f;
fFriction = 0.5f;
vx = _vx;
vy = _vy;
bDead = false;
nBounceBeforeDeath = 1;
bStable = false;
}
virtual void Draw(olcConsoleGameEngine *engine, float fOffsetX, float fOffsetY, bool bPixel = false)
{
engine->DrawWireFrameModel(vecModel, px - fOffsetX, py - fOffsetY, atan2f(vy, vx), bPixel ? 0.5f : radius, FG_BLACK);
}
virtual int BounceDeathAction()
{
return 20; // Explode Big
}
virtual bool Damage(float d)
{
return true;
}
private:
static vector<pair<float, float>> vecModel;
};
vector<pair<float, float>> DefineMissile()
{
// Defines a rocket like shape
vector<pair<float, float>> vecModel;
vecModel.push_back({ 0.0f, 0.0f });
vecModel.push_back({ 1.0f, 1.0f });
vecModel.push_back({ 2.0f, 1.0f });
vecModel.push_back({ 2.5f, 0.0f });
vecModel.push_back({ 2.0f, -1.0f });
vecModel.push_back({ 1.0f, -1.0f });
vecModel.push_back({ 0.0f, 0.0f });
vecModel.push_back({ -1.0f, -1.0f });
vecModel.push_back({ -2.5f, -1.0f });
vecModel.push_back({ -2.0f, 0.0f });
vecModel.push_back({ -2.5f, 1.0f });
vecModel.push_back({ -1.0f, 1.0f });
// Scale points to make shape unit(ish) sized
for (auto &v : vecModel)
{
v.first /= 1.5f; v.second /= 1.5f;
}
return vecModel;
}
vector<pair<float, float>> cMissile::vecModel = DefineMissile();
class cWorm : public cPhysicsObject // A unit, or worm
{
public:
cWorm(float x = 0.0f, float y = 0.0f) : cPhysicsObject(x, y)
{
radius = 3.5f;
fFriction = 0.2f;
bDead = false;
nBounceBeforeDeath = -1;
bStable = false;
// load sprite data from sprite file
if (sprWorm == nullptr)
sprWorm = new olcSprite(L"worms1.spr");
}
virtual void Draw(olcConsoleGameEngine *engine, float fOffsetX, float fOffsetY, bool bPixel = false)
{
if (bIsPlayable) // Draw Worm Sprite with health bar, in team colours
{
engine->DrawPartialSprite(px - fOffsetX - radius, py - fOffsetY - radius, sprWorm, nTeam * 8, 0, 8, 8);
// Draw health bar for worm
for (int i = 0; i < 11 * fHealth; i++)
{
engine->Draw(px - 5 + i - fOffsetX, py + 5 - fOffsetY, PIXEL_SOLID, FG_BLUE);
engine->Draw(px - 5 + i - fOffsetX, py + 6 - fOffsetY, PIXEL_SOLID, FG_BLUE);
}
}
else // Draw tombstone sprite for team colour
{
engine->DrawPartialSprite(px - fOffsetX - radius, py - fOffsetY - radius, sprWorm, nTeam * 8, 8, 8, 8);
}
}
virtual int BounceDeathAction()
{
return 0; // Nothing
}
virtual bool Damage(float d) // Reduce worm's health by said amount
{
fHealth -= d;
if (fHealth <= 0)
{ // Worm has died, no longer playable
fHealth = 0.0f;
bIsPlayable = false;
}
return fHealth > 0;
}
public:
float fShootAngle = 0.0f;
float fHealth = 1.0f;
int nTeam = 0; // ID of which team this worm belongs to
bool bIsPlayable = true;
private:
static olcSprite *sprWorm;
};
olcSprite* cWorm::sprWorm = nullptr;
class cTeam // Defines a group of worms
{
public:
vector<cWorm*> vecMembers;
int nCurrentMember = 0; // Index into vector for current worms turn
int nTeamSize = 0; // Total number of worms in team
bool IsTeamAlive()
{
// Iterate through all team members, if any of them have >0 health, return true;
bool bAllDead = false;
for (auto w : vecMembers)
bAllDead |= (w->fHealth > 0.0f);
return bAllDead;
}
cWorm* GetNextMember()
{
// Return a pointer to the next team member that is valid for control
do {
nCurrentMember++;
if (nCurrentMember >= nTeamSize) nCurrentMember = 0;
} while (vecMembers[nCurrentMember]->fHealth <= 0);
return vecMembers[nCurrentMember];
}
};
// Main Game Engine Class
class OneLoneCoder_Worms : public olcConsoleGameEngine // The game
{
public:
OneLoneCoder_Worms()
{
m_sAppName = L"Worms";
}
private:
// Terrain size
int nMapWidth = 1024;
int nMapHeight = 512;
char *map = nullptr;
// Camera Coordinates
float fCameraPosX = 0.0f;
float fCameraPosY = 0.0f;
float fCameraPosXTarget = 0.0f;
float fCameraPosYTarget = 0.0f;
// list of things that exist in game world
list<unique_ptr<cPhysicsObject>> listObjects;
cPhysicsObject* pObjectUnderControl = nullptr; // Pointer to object currently under control
cPhysicsObject* pCameraTrackingObject = nullptr; // Pointer to object that camera should track
// Flags that govern/are set by game state machine
bool bZoomOut = false; // Render whole map
bool bGameIsStable = false; // All physics objects are stable
bool bEnablePlayerControl = true; // The player is in control, keyboard input enabled
bool bEnableComputerControl = false; // The AI is in control
bool bEnergising = false; // Weapon is charging
bool bFireWeapon = false; // Weapon should be discharged
bool bShowCountDown = false; // Display turn time counter on screen
bool bPlayerHasFired = false; // Weapon has been discharged
float fEnergyLevel = 0.0f; // Energy accumulated through charging (player only)
float fTurnTime = 0.0f; // Time left to take turn
// Vector to store teams
vector<cTeam> vecTeams;
// Current team being controlled
int nCurrentTeam = 0;
// AI control flags
bool bAI_Jump = false; // AI has pressed "JUMP" key
bool bAI_AimLeft = false; // AI has pressed "AIM_LEFT" key
bool bAI_AimRight = false; // AI has pressed "AIM_RIGHT" key
bool bAI_Energise = false; // AI has pressed "FIRE" key
float fAITargetAngle = 0.0f; // Angle AI should aim for
float fAITargetEnergy = 0.0f; // Energy level AI should aim for
float fAISafePosition = 0.0f; // X-Coordinate considered safe for AI to move to
cWorm* pAITargetWorm = nullptr; // Pointer to worm AI has selected as target
float fAITargetX = 0.0f; // Coordinates of target missile location
float fAITargetY = 0.0f;
enum GAME_STATE
{
GS_RESET = 0,
GS_GENERATE_TERRAIN = 1,
GS_GENERATING_TERRAIN,
GS_ALLOCATE_UNITS,
GS_ALLOCATING_UNITS,
GS_START_PLAY,
GS_CAMERA_MODE,
GS_GAME_OVER1,
GS_GAME_OVER2
} nGameState, nNextState;
enum AI_STATE
{
AI_ASSESS_ENVIRONMENT = 0,
AI_MOVE,
AI_CHOOSE_TARGET,
AI_POSITION_FOR_TARGET,
AI_AIM,
AI_FIRE,
} nAIState, nAINextState;
virtual bool OnUserCreate()
{
// Create Map
map = new char[nMapWidth * nMapHeight];
memset(map, 0, nMapWidth*nMapHeight * sizeof( char));
// Set initial states for state machines
nGameState = GS_RESET;
nNextState = GS_RESET;
nAIState = AI_ASSESS_ENVIRONMENT;
nAINextState = AI_ASSESS_ENVIRONMENT;
bGameIsStable = false;
return true;
}
virtual bool OnUserUpdate(float fElapsedTime)
{
// Tab key toggles between whole map view and up close view
if (m_keys[VK_TAB].bReleased)
bZoomOut = !bZoomOut;
// Mouse Edge Map Scroll
float fMapScrollSpeed = 400.0f;
if (m_mousePosX < 5) fCameraPosX -= fMapScrollSpeed * fElapsedTime;
if (m_mousePosX > ScreenWidth() - 5) fCameraPosX += fMapScrollSpeed * fElapsedTime;
if (m_mousePosY < 5) fCameraPosY -= fMapScrollSpeed * fElapsedTime;
if (m_mousePosY > ScreenHeight() - 5) fCameraPosY += fMapScrollSpeed * fElapsedTime;
// Control Supervisor
switch (nGameState)
{
case GS_RESET:
{
bEnablePlayerControl = false;
bGameIsStable = false;
bPlayerHasFired = false;
bShowCountDown = false;
nNextState = GS_GENERATE_TERRAIN;
}
break;
case GS_GENERATE_TERRAIN:
{
bZoomOut = true;
CreateMap();
bGameIsStable = false;
bShowCountDown = false;
nNextState = GS_GENERATING_TERRAIN;
}
break;
case GS_GENERATING_TERRAIN:
{
bShowCountDown = false;
if (bGameIsStable)
nNextState = GS_ALLOCATE_UNITS;
}
break;
case GS_ALLOCATE_UNITS:
{
// Deploy teams
int nTeams = 4;
int nWormsPerTeam = 4;
// Calculate spacing of worms and teams
float fSpacePerTeam = (float)nMapWidth / (float)nTeams;
float fSpacePerWorm = fSpacePerTeam / (nWormsPerTeam * 2.0f);
// Create teams
for (int t = 0; t < nTeams; t++)
{
vecTeams.emplace_back(cTeam());
float fTeamMiddle = (fSpacePerTeam / 2.0f) + (t * fSpacePerTeam);
for (int w = 0; w < nWormsPerTeam; w++)
{
float fWormX = fTeamMiddle - ((fSpacePerWorm * (float)nWormsPerTeam) / 2.0f) + w * fSpacePerWorm;
float fWormY = 0.0f;
// Add worms to teams
cWorm *worm = new cWorm(fWormX,fWormY);
worm->nTeam = t;
listObjects.push_back(unique_ptr<cWorm>(worm));
vecTeams[t].vecMembers.push_back(worm);
vecTeams[t].nTeamSize = nWormsPerTeam;
}
vecTeams[t].nCurrentMember = 0;
}
// Select players first worm for control and camera tracking
pObjectUnderControl = vecTeams[0].vecMembers[vecTeams[0].nCurrentMember];
pCameraTrackingObject = pObjectUnderControl;
bShowCountDown = false;
nNextState = GS_ALLOCATING_UNITS;
}
break;
case GS_ALLOCATING_UNITS: // Wait for units to "parachute" in
{
if (bGameIsStable)
{
bEnablePlayerControl = true;
bEnableComputerControl = false;
fTurnTime = 15.0f;
bZoomOut = false;
nNextState = GS_START_PLAY;
}
}
break;
case GS_START_PLAY:
{
bShowCountDown = true;
// If player has discharged weapon, or turn time is up, move on to next state
if (bPlayerHasFired || fTurnTime <= 0.0f)
nNextState = GS_CAMERA_MODE;
}
break;
case GS_CAMERA_MODE: // Camera follows object of interest until the physics engine has settled
{
bEnableComputerControl = false;
bEnablePlayerControl = false;
bPlayerHasFired = false;
bShowCountDown = false;
fEnergyLevel = 0.0f;
if (bGameIsStable) // Once settled, choose next worm
{
// Get Next Team, if there is no next team, game is over
int nOldTeam = nCurrentTeam;
do {
nCurrentTeam++;
nCurrentTeam %= vecTeams.size();
} while (!vecTeams[nCurrentTeam].IsTeamAlive());
// Lock controls if AI team is currently playing
if (nCurrentTeam == 0) // Player Team
{
bEnablePlayerControl = true; // Swap these around for complete AI battle
bEnableComputerControl = false;
}
else // AI Team
{
bEnablePlayerControl = false;
bEnableComputerControl = true;
}
// Set control and camera
pObjectUnderControl = vecTeams[nCurrentTeam].GetNextMember();
pCameraTrackingObject = pObjectUnderControl;
fTurnTime = 15.0f;
bZoomOut = false;
nNextState = GS_START_PLAY;
// If no different team could be found...
if (nCurrentTeam == nOldTeam)
{
// ...Game is over, Current Team have won!
nNextState = GS_GAME_OVER1;
}
}
}
break;
case GS_GAME_OVER1: // Zoom out and launch loads of missiles!
{
bEnableComputerControl = false;
bEnablePlayerControl = false;
bZoomOut = true;
bShowCountDown = false;
for (int i = 0; i < 100; i ++)
{
int nBombX = rand() % nMapWidth;
int nBombY = rand() % (nMapHeight / 2);
listObjects.push_back(unique_ptr<cMissile>(new cMissile(nBombX, nBombY, 0.0f, 0.5f)));
}
nNextState = GS_GAME_OVER2;
}
break;
case GS_GAME_OVER2: // Stay here and wait for chaos to settle
{
bEnableComputerControl = false;
bEnablePlayerControl = false;
// No exit from this state!
}
break;
}
// AI State Machine
if (bEnableComputerControl)
{
switch (nAIState)
{
case AI_ASSESS_ENVIRONMENT:
{
int nAction = rand() % 3;
if (nAction == 0) // Play Defensive - move away from team
{
// Find nearest ally, walk away from them
float fNearestAllyDistance = INFINITY; float fDirection = 0;
cWorm *origin = (cWorm*)pObjectUnderControl;
for (auto w : vecTeams[nCurrentTeam].vecMembers)
{
if (w != pObjectUnderControl)
{
if (fabs(w->px - origin->px) < fNearestAllyDistance)
{
fNearestAllyDistance = fabs(w->px - origin->px);
fDirection = (w->px - origin->px) < 0.0f ? 1.0f : -1.0f;
}
}
}
if (fNearestAllyDistance < 50.0f)
fAISafePosition = origin->px + fDirection * 80.0f;
else
fAISafePosition = origin->px;
}
if (nAction == 1) // Play Ballsy - move towards middle
{
cWorm *origin = (cWorm*)pObjectUnderControl;
float fDirection = ((float)(nMapWidth / 2.0f) - origin->px) < 0.0f ? -1.0f : 1.0f;
fAISafePosition = origin->px + fDirection * 200.0f;
}
if (nAction == 2) // Play Dumb - don't move
{
cWorm *origin = (cWorm*)pObjectUnderControl;
fAISafePosition = origin->px;
}
// Clamp so dont walk off map
if (fAISafePosition <= 20.0f) fAISafePosition = 20.0f;
if (fAISafePosition >= nMapWidth - 20.0f) fAISafePosition = nMapWidth - 20.0f;
nAINextState = AI_MOVE;
}
break;
case AI_MOVE:
{
cWorm *origin = (cWorm*)pObjectUnderControl;
if (fTurnTime >= 8.0f && origin->px != fAISafePosition)
{
// Walk towards target until it is in range
if (fAISafePosition < origin->px && bGameIsStable)
{
origin->fShootAngle = -3.14159f * 0.6f;
bAI_Jump = true;
nAINextState = AI_MOVE;
}
if (fAISafePosition > origin->px && bGameIsStable)
{
origin->fShootAngle = -3.14159f * 0.4f;
bAI_Jump = true;
nAINextState = AI_MOVE;
}
}
else
nAINextState = AI_CHOOSE_TARGET;
}
break;
case AI_CHOOSE_TARGET: // Worm finished moving, choose target
{
bAI_Jump = false;
// Select Team that is not itself
cWorm *origin = (cWorm*)pObjectUnderControl;
int nCurrentTeam = origin->nTeam;
int nTargetTeam = 0;
do {
nTargetTeam = rand() % vecTeams.size();
} while (nTargetTeam == nCurrentTeam || !vecTeams[nTargetTeam].IsTeamAlive());
// Aggressive strategy is to aim for opponent unit with most health
cWorm *mostHealthyWorm = vecTeams[nTargetTeam].vecMembers[0];
for (auto w : vecTeams[nTargetTeam].vecMembers)
if (w->fHealth > mostHealthyWorm->fHealth)
mostHealthyWorm = w;
pAITargetWorm = mostHealthyWorm;
fAITargetX = mostHealthyWorm->px;
fAITargetY = mostHealthyWorm->py;
nAINextState = AI_POSITION_FOR_TARGET;
}
break;
case AI_POSITION_FOR_TARGET: // Calculate trajectory for target, if the worm needs to move, do so
{
cWorm *origin = (cWorm*)pObjectUnderControl;
float dy = -(fAITargetY - origin->py);
float dx = -(fAITargetX - origin->px);
float fSpeed = 30.0f;
float fGravity = 2.0f;
bAI_Jump = false;
float a = fSpeed * fSpeed*fSpeed*fSpeed - fGravity * (fGravity * dx * dx + 2.0f * dy * fSpeed * fSpeed);
if (a < 0) // Target is out of range
{
if (fTurnTime >= 5.0f)
{
// Walk towards target until it is in range
if (pAITargetWorm->px < origin->px && bGameIsStable)
{
origin->fShootAngle = -3.14159f * 0.6f;
bAI_Jump = true;
nAINextState = AI_POSITION_FOR_TARGET;
}
if (pAITargetWorm->px > origin->px && bGameIsStable)
{
origin->fShootAngle = -3.14159f * 0.4f;
bAI_Jump = true;
nAINextState = AI_POSITION_FOR_TARGET;
}
}
else
{
// Worm is stuck, so just fire in direction of enemy!
// Its dangerous to self, but may clear a blockage
fAITargetAngle = origin->fShootAngle;
fAITargetEnergy = 0.75f;
nAINextState = AI_AIM;
}
}
else
{
// Worm is close enough, calculate trajectory
float b1 = fSpeed * fSpeed + sqrtf(a);
float b2 = fSpeed * fSpeed - sqrtf(a);
float fTheta1 = atanf(b1 / (fGravity * dx)); // Max Height
float fTheta2 = atanf(b2 / (fGravity * dx)); // Min Height
// We'll use max as its a greater chance of avoiding obstacles
fAITargetAngle = fTheta1 - (dx > 0 ? 3.14159f : 0.0f);
float fFireX = cosf(fAITargetAngle);
float fFireY = sinf(fAITargetAngle);
// AI is clamped to 3/4 power
fAITargetEnergy = 0.75f;
nAINextState = AI_AIM;
}
}
break;
case AI_AIM: // Line up aim cursor
{
cWorm *worm = (cWorm*)pObjectUnderControl;
bAI_AimLeft = false;
bAI_AimRight = false;
bAI_Jump = false;
if (worm->fShootAngle < fAITargetAngle)
bAI_AimRight = true;
else
bAI_AimLeft = true;
// Once cursors are aligned, fire - some noise could be
// included here to give the AI a varying accuracy, and the
// magnitude of the noise could be linked to game difficulty
if (fabs(worm->fShootAngle - fAITargetAngle) <= 0.001f)
{
bAI_AimLeft = false;
bAI_AimRight = false;
fEnergyLevel = 0.0f;
nAINextState = AI_FIRE;
}
else
nAINextState = AI_AIM;
}
break;
case AI_FIRE:
{
bAI_Energise = true;
bFireWeapon = false;
bEnergising = true;
if (fEnergyLevel >= fAITargetEnergy)
{
bFireWeapon = true;
bAI_Energise = false;
bEnergising = false;
bEnableComputerControl = false;
nAINextState = AI_ASSESS_ENVIRONMENT;
}
}
break;
}
}
// Decrease Turn Time
fTurnTime -= fElapsedTime;
if (pObjectUnderControl != nullptr)
{
pObjectUnderControl->ax = 0.0f;
if (pObjectUnderControl->bStable)
{
if ((bEnablePlayerControl && m_keys[L'Z'].bPressed) || (bEnableComputerControl && bAI_Jump))
{
float a = ((cWorm*)pObjectUnderControl)->fShootAngle;
pObjectUnderControl->vx = 4.0f * cosf(a);
pObjectUnderControl->vy = 8.0f * sinf(a);
pObjectUnderControl->bStable = false;
bAI_Jump = false;
}
if ((bEnablePlayerControl && m_keys[L'S'].bHeld) || (bEnableComputerControl && bAI_AimRight))
{
cWorm* worm = (cWorm*)pObjectUnderControl;
worm->fShootAngle += 1.0f * fElapsedTime;
if (worm->fShootAngle > 3.14159f) worm->fShootAngle -= 3.14159f * 2.0f;
}
if ((bEnablePlayerControl && m_keys[L'A'].bHeld) || (bEnableComputerControl && bAI_AimLeft))
{
cWorm* worm = (cWorm*)pObjectUnderControl;
worm->fShootAngle -= 1.0f * fElapsedTime;
if (worm->fShootAngle < -3.14159f) worm->fShootAngle += 3.14159f * 2.0f;
}
if ((bEnablePlayerControl && m_keys[VK_SPACE].bPressed))
{
bFireWeapon = false;
bEnergising = true;
fEnergyLevel = 0.0f;
}
if ((bEnablePlayerControl && m_keys[VK_SPACE].bHeld) || (bEnableComputerControl && bAI_Energise))
{
if (bEnergising)
{
fEnergyLevel += 0.75f * fElapsedTime;
if (fEnergyLevel >= 1.0f)
{
fEnergyLevel = 1.0f;
bFireWeapon = true;
}
}
}
if ((bEnablePlayerControl && m_keys[VK_SPACE].bReleased))
{
if (bEnergising)
{
bFireWeapon = true;
}
bEnergising = false;
}
}
if (pCameraTrackingObject != nullptr)
{
fCameraPosXTarget = pCameraTrackingObject->px - ScreenWidth() / 2;
fCameraPosYTarget = pCameraTrackingObject->py - ScreenHeight() / 2;
fCameraPosX += (fCameraPosXTarget - fCameraPosX) * 15.0f * fElapsedTime;
fCameraPosY += (fCameraPosYTarget - fCameraPosY) * 15.0f * fElapsedTime;
}
if (bFireWeapon)
{
cWorm* worm = (cWorm*)pObjectUnderControl;
// Get Weapon Origin
float ox = worm->px;
float oy = worm->py;
// Get Weapon Direction
float dx = cosf(worm->fShootAngle);
float dy = sinf(worm->fShootAngle);
// Create Weapon Object
cMissile *m = new cMissile(ox, oy, dx * 40.0f * fEnergyLevel, dy * 40.0f * fEnergyLevel);
pCameraTrackingObject = m;
listObjects.push_back(unique_ptr<cMissile>(m));
// Reset flags involved with firing weapon
bFireWeapon = false;
fEnergyLevel = 0.0f;
bEnergising = false;
bPlayerHasFired = true;
if (rand() % 100 >= 50)
bZoomOut = true;
}
}
// Clamp map boundaries
if (fCameraPosX < 0) fCameraPosX = 0;
if (fCameraPosX >= nMapWidth - ScreenWidth()) fCameraPosX = nMapWidth - ScreenWidth();
if (fCameraPosY < 0) fCameraPosY = 0;
if (fCameraPosY >= nMapHeight - ScreenHeight()) fCameraPosY = nMapHeight - ScreenHeight();
// Do 10 physics iterations per frame
for (int z = 0; z < 10; z++)
{
// Update physics of all physical objects
for (auto &p : listObjects)
{
// Apply Gravity
p->ay += 2.0f;
// Update Velocity
p->vx += p->ax * fElapsedTime;
p->vy += p->ay * fElapsedTime;
// Update Position
float fPotentialX = p->px + p->vx * fElapsedTime;
float fPotentialY = p->py + p->vy * fElapsedTime;
// Reset Acceleration
p->ax = 0.0f;
p->ay = 0.0f;
p->bStable = false;
// Collision Check With Map
float fAngle = atan2f(p->vy, p->vx);
float fResponseX = 0;
float fResponseY = 0;
bool bCollision = false;
for (float r = fAngle - 3.14159f / 2.0f; r < fAngle + 3.14159f / 2.0f; r += 3.14159f / 4.0f)
{
// Iterate through semicircle of objects radius rotated to direction of travel
float fTestPosX = (p->radius) * cosf(r) + fPotentialX;
float fTestPosY = (p->radius) * sinf(r) + fPotentialY;
if (fTestPosX >= nMapWidth) fTestPosX = nMapWidth - 1;
if (fTestPosY >= nMapHeight) fTestPosY = nMapHeight - 1;
if (fTestPosX < 0) fTestPosX = 0;
if (fTestPosY < 0) fTestPosY = 0;
// Test if any points on semicircle intersect with terrain
if (map[(int)fTestPosY * nMapWidth + (int)fTestPosX] > 0)
{
// Accumulate collision points to give an escape response vector
// Effectively, normal to the areas of contact
fResponseX += fPotentialX - fTestPosX;
fResponseY += fPotentialY - fTestPosY;
bCollision = true;
}
}
float fMagVelocity = sqrtf(p->vx*p->vx + p->vy*p->vy);
float fMagResponse = sqrtf(fResponseX*fResponseX + fResponseY*fResponseY);
if (p->px < 0 || p->px > nMapWidth || p->py <0 || p->py > nMapHeight)
p->bDead = true;
// Find angle of collision
if (bCollision)
{
p->bStable = true;
// Calculate reflection vector of objects velocity vector, using response vector as normal
float dot = p->vx * (fResponseX / fMagResponse) + p->vy * (fResponseY / fMagResponse);
// Use friction coefficient to dampen response (approximating energy loss)
p->vx = p->fFriction * (-2.0f * dot * (fResponseX / fMagResponse) + p->vx);
p->vy = p->fFriction * (-2.0f * dot * (fResponseY / fMagResponse) + p->vy);
//Some objects will "die" after several bounces
if (p->nBounceBeforeDeath > 0)
{
p->nBounceBeforeDeath--;
p->bDead = p->nBounceBeforeDeath == 0;
if (p->bDead)
{
// Action upon object death
// = 0 Nothing
// > 0 Explosion
int nResponse = p->BounceDeathAction();
if (nResponse > 0)
{
Boom(p->px, p->py, nResponse);
pCameraTrackingObject = nullptr;
}
}
}
}
else
{
p->px = fPotentialX;
p->py = fPotentialY;
}
// Turn off movement when tiny
if (fMagVelocity < 0.1f) p->bStable = true;
}
// Remove dead objects from the list, so they are not processed further. As the object
// is a unique pointer, it will go out of scope too, deleting the object automatically. Nice :-)
listObjects.remove_if([](unique_ptr<cPhysicsObject> &o){return o->bDead;});
}
// Draw Landscape
if (!bZoomOut)
{
for (int x = 0; x < ScreenWidth(); x++)
for (int y = 0; y < ScreenHeight(); y++)
{
switch (map[(y + (int)fCameraPosY)*nMapWidth + (x + (int)fCameraPosX)])
{
case -1:Draw(x, y, PIXEL_SOLID, FG_DARK_BLUE); break;
case -2:Draw(x, y, PIXEL_QUARTER, FG_BLUE | BG_DARK_BLUE); break;
case -3:Draw(x, y, PIXEL_HALF, FG_BLUE | BG_DARK_BLUE); break;
case -4:Draw(x, y, PIXEL_THREEQUARTERS, FG_BLUE | BG_DARK_BLUE); break;
case -5:Draw(x, y, PIXEL_SOLID, FG_BLUE); break;
case -6:Draw(x, y, PIXEL_QUARTER, FG_CYAN | BG_BLUE); break;
case -7:Draw(x, y, PIXEL_HALF, FG_CYAN | BG_BLUE); break;
case -8:Draw(x, y, PIXEL_THREEQUARTERS, FG_CYAN | BG_BLUE); break;
case 0: Draw(x, y, PIXEL_SOLID, FG_CYAN); break;
case 1: Draw(x, y, PIXEL_SOLID, FG_DARK_GREEN); break;
}
}
// Draw objects - they draw themselves
for (auto &p : listObjects)
{
p->Draw(this, fCameraPosX, fCameraPosY);
cWorm* worm = (cWorm*)pObjectUnderControl;
if (p.get() == worm)
{
// Draw Crosshair
float cx = worm->px + 8.0f * cosf(worm->fShootAngle) - fCameraPosX;
float cy = worm->py + 8.0f * sinf(worm->fShootAngle) - fCameraPosY;
Draw(cx, cy, PIXEL_SOLID, FG_BLACK);
Draw(cx + 1, cy, PIXEL_SOLID, FG_BLACK);
Draw(cx - 1, cy, PIXEL_SOLID, FG_BLACK);
Draw(cx, cy + 1, PIXEL_SOLID, FG_BLACK);
Draw(cx, cy - 1, PIXEL_SOLID, FG_BLACK);
//DrawString(cx - 3, cy - 3, to_wstring(bEnergyLevel), FG_WHITE);
for (int i = 0; i < 11 * fEnergyLevel; i++)
{
Draw(worm->px - 5 + i - fCameraPosX, worm->py - 12 - fCameraPosY, PIXEL_SOLID, FG_GREEN);
Draw(worm->px - 5 + i - fCameraPosX, worm->py - 11 - fCameraPosY, PIXEL_SOLID, FG_RED);
}
}
}
}
else
{
for (int x = 0; x < ScreenWidth(); x++)
for (int y = 0; y < ScreenHeight(); y++)
{
float fx = (float)x/(float)ScreenWidth() * (float)nMapWidth;
float fy = (float)y/(float)ScreenHeight() * (float)nMapHeight;
switch (map[((int)fy)*nMapWidth + ((int)fx)])
{
case -1:Draw(x, y, PIXEL_SOLID, FG_DARK_BLUE); break;
case -2:Draw(x, y, PIXEL_QUARTER, FG_BLUE | BG_DARK_BLUE); break;
case -3:Draw(x, y, PIXEL_HALF, FG_BLUE | BG_DARK_BLUE); break;
case -4:Draw(x, y, PIXEL_THREEQUARTERS, FG_BLUE | BG_DARK_BLUE); break;
case -5:Draw(x, y, PIXEL_SOLID, FG_BLUE); break;
case -6:Draw(x, y, PIXEL_QUARTER, FG_CYAN | BG_BLUE); break;
case -7:Draw(x, y, PIXEL_HALF, FG_CYAN | BG_BLUE); break;
case -8:Draw(x, y, PIXEL_THREEQUARTERS, FG_CYAN | BG_BLUE); break;
case 0: Draw(x, y, PIXEL_SOLID, FG_CYAN);break;
case 1: Draw(x, y, PIXEL_SOLID, FG_DARK_GREEN); break;
}
}
for (auto &p : listObjects)
p->Draw(this, p->px-(p->px / (float)nMapWidth) * (float)ScreenWidth(),
p->py-(p->py / (float)nMapHeight) * (float)ScreenHeight(), true);
}
// Check For game state stability
bGameIsStable = true;
for (auto &p : listObjects)
if (!p->bStable)
{
bGameIsStable = false;
break;
}
// This little marker is handy for debugging
//if (bGameIsStable)
// Fill(2, 2, 6, 6, PIXEL_SOLID, FG_RED);
// Draw Team Health Bars
for (size_t t = 0; t < vecTeams.size(); t++)
{
float fTotalHealth = 0.0f;
float fMaxHealth = (float)vecTeams[t].nTeamSize;
for (auto w : vecTeams[t].vecMembers) // Accumulate team health
fTotalHealth += w->fHealth;
int cols[] = { FG_RED, FG_BLUE, FG_MAGENTA, FG_GREEN };
Fill(4, 4 + t * 4, (fTotalHealth / fMaxHealth) * (float)(ScreenWidth() - 8) + 4, 4 + t * 4 + 3, PIXEL_SOLID, cols[t]);
}
// Mystery Code !! Displays Seven-Segment Display for countdown timer
// Display Turn Time - Check out the discord #challenges for explanation!
// Thanks to all those awesome discord chatters who took part! I've kept
// this minimised and obfuscated to maintain the spirit of the challenge!
if (bShowCountDown)
{
wchar_t d[]=L"w$]m.k{\%\x7Fo";int tx=4,ty=vecTeams.size()*4+8;
for(int r=0;r<13;r++){for(int c=0;c<((fTurnTime<10.0f)?1:2);c++){
int a=to_wstring(fTurnTime)[c]-48;if(!(r%6)){DrawStringAlpha(tx,
ty,wstring((d[a]&(1<<(r/2))?L" ##### ":L" ")),FG_BLACK);
tx+=8;}else{DrawStringAlpha(tx,ty,wstring((d[a]&(1<<(r<6?1:4))?
L"# ":L" ")),FG_BLACK);tx+=6;DrawStringAlpha(tx,ty,wstring
((d[a]&(1<<(r<6?2:5))?L"# ":L" ")),FG_BLACK);tx+=2;}}ty++;tx=4;}
}
// Update State Machine
nGameState = nNextState;
nAIState = nAINextState;
return true;
}
void Boom(float fWorldX, float fWorldY, float fRadius)
{
auto CircleBresenham = [&](int xc, int yc, int r)
{
int x = 0;
int y = r;
int p = 3 - 2 * r;
if (!r) return;
auto drawline = [&](int sx, int ex, int ny)
{
for (int i = sx; i < ex; i++)
if(ny >=0 && ny < nMapHeight && i >=0 && i < nMapWidth)
map[ny*nMapWidth + i] = 0;
};
while (y >= x) // only formulate 1/8 of circle
{
//Filled Circle
drawline(xc - x, xc + x, yc - y);
drawline(xc - y, xc + y, yc - x);
drawline(xc - x, xc + x, yc + y);
drawline(xc - y, xc + y, yc + x);
if (p < 0) p += 4 * x++ + 6;
else p += 4 * (x++ - y--) + 10;
}
};
int bx = (int)fWorldX;
int by = (int)fWorldY;
// Erase Terrain to form crater
CircleBresenham(fWorldX, fWorldY, fRadius);
// Shockwave other entities in range
for (auto &p : listObjects)
{
float dx = p->px - fWorldX;
float dy = p->py - fWorldY;
float fDist = sqrt(dx*dx + dy*dy);
if (fDist < 0.0001f) fDist = 0.0001f;
if (fDist < fRadius)
{
p->vx = (dx / fDist) * fRadius;
p->vy = (dy / fDist) * fRadius;
p->Damage(((fRadius - fDist) / fRadius) * 0.8f); // Corrected ;)
p->bStable = false;
}
}
// Launch debris
for (int i = 0; i < (int)fRadius; i++)
listObjects.push_back(unique_ptr<cDebris>(new cDebris(fWorldX, fWorldY)));
}
// Taken from Perlin Noise Video https://youtu.be/6-0UaeJBumA
void PerlinNoise1D(int nCount, float *fSeed, int nOctaves, float fBias, float *fOutput)
{
// Used 1D Perlin Noise
for (int x = 0; x < nCount; x++)
{
float fNoise = 0.0f;
float fScaleAcc = 0.0f;
float fScale = 1.0f;
for (int o = 0; o < nOctaves; o++)
{
int nPitch = nCount >> o;
int nSample1 = (x / nPitch) * nPitch;
int nSample2 = (nSample1 + nPitch) % nCount;
float fBlend = (float)(x - nSample1) / (float)nPitch;
float fSample = (1.0f - fBlend) * fSeed[nSample1] + fBlend * fSeed[nSample2];
fScaleAcc += fScale;
fNoise += fSample * fScale;
fScale = fScale / fBias;
}
// Scale to seed range
fOutput[x] = fNoise / fScaleAcc;
}
}
void CreateMap()
{
// Used 1D Perlin Noise
float *fSurface = new float[nMapWidth];
float *fNoiseSeed = new float[nMapWidth];
for (int i = 0; i < nMapWidth; i++)
fNoiseSeed[i] = (float)rand() / (float)RAND_MAX;
fNoiseSeed[0] = 0.5f;
PerlinNoise1D(nMapWidth, fNoiseSeed, 8, 2.0f, fSurface);
for (int x = 0; x < nMapWidth; x++)
for (int y = 0; y < nMapHeight; y++)
{
if (y >= fSurface[x] * nMapHeight)
map[y * nMapWidth + x] = 1;
else
{
// Shade the sky according to altitude - we only do top 1/3 of map
// as the Boom() function will just paint in 0 (cyan)
if ((float)y < (float)nMapHeight / 3.0f)
map[y * nMapWidth + x] = (-8.0f * ((float)y / (nMapHeight / 3.0f))) -1.0f;
else
map[y * nMapWidth + x] = 0;
}
}
delete[] fSurface;
delete[] fNoiseSeed;
}
};
int main()
{
OneLoneCoder_Worms game;
game.ConstructConsole(256, 160, 6, 6);
game.Start();
return 0;
}