/* OneLoneCoder.com - Programming Racing Lines "Brake! Brake! Hard Left! " - @Javidx9 License ~~~~~~~ One Lone Coder Console Game Engine Copyright (C) 2018 Javidx9 This program comes with ABSOLUTELY NO WARRANTY. This is free software, and you are welcome to redistribute it under certain conditions; See license for details. Original works located at: https://www.github.com/onelonecoder https://www.onelonecoder.com https://www.youtube.com/javidx9 GNU GPLv3 https://github.com/OneLoneCoder/videos/blob/master/LICENSE From Javidx9 :) ~~~~~~~~~~~~~~~ Hello! Ultimately I don't care what you use this for. It's intended to be educational, and perhaps to the oddly minded - a little bit of fun. Please hack this, change it and use it in any way you see fit. You acknowledge that I am not responsible for anything bad that happens as a result of your actions. However this code is protected by GNU GPLv3, see the license in the github repo. This means you must attribute me if you use it. You can view this license here: https://github.com/OneLoneCoder/videos/blob/master/LICENSE Cheers! Background ~~~~~~~~~~ Algorithmically generating a racing line is quite tricky. This simple framework allows me to explore different methods. Use mouse to drag points, and A & S keys to change the number of iterations. Author ~~~~~~ Twitter: @javidx9 Blog: http://www.onelonecoder.com Discord: https://discord.gg/WhwHUMV Video: ~~~~~~ https://youtu.be/FlieT66N9OM Last Updated: 27/05/2018 */ #include #include using namespace std; #include "olcConsoleGameEngine.h" // See Programming Splines! Videos struct sPoint2D { float x; float y; float length; }; struct sSpline { vector points; float fTotalSplineLength = 0.0f; bool bIsLooped = true; sPoint2D GetSplinePoint(float t) { int p0, p1, p2, p3; if (!bIsLooped) { p1 = (int)t + 1; p2 = p1 + 1; p3 = p2 + 1; p0 = p1 - 1; } else { p1 = ((int)t) % points.size(); p2 = (p1 + 1) % points.size(); p3 = (p2 + 1) % points.size(); p0 = p1 >= 1 ? p1 - 1 : points.size() - 1; } t = t - (int)t; float tt = t * t; float ttt = tt * t; float q1 = -ttt + 2.0f*tt - t; float q2 = 3.0f*ttt - 5.0f*tt + 2.0f; float q3 = -3.0f*ttt + 4.0f*tt + t; float q4 = ttt - tt; float tx = 0.5f * (points[p0].x * q1 + points[p1].x * q2 + points[p2].x * q3 + points[p3].x * q4); float ty = 0.5f * (points[p0].y * q1 + points[p1].y * q2 + points[p2].y * q3 + points[p3].y * q4); return{ tx, ty }; } sPoint2D GetSplineGradient(float t) { int p0, p1, p2, p3; if (!bIsLooped) { p1 = (int)t + 1; p2 = p1 + 1; p3 = p2 + 1; p0 = p1 - 1; } else { p1 = ((int)t) % points.size(); p2 = (p1 + 1) % points.size(); p3 = (p2 + 1) % points.size(); p0 = p1 >= 1 ? p1 - 1 : points.size() - 1; } t = t - (int)t; float tt = t * t; float ttt = tt * t; float q1 = -3.0f * tt + 4.0f*t - 1.0f; float q2 = 9.0f*tt - 10.0f*t; float q3 = -9.0f*tt + 8.0f*t + 1.0f; float q4 = 3.0f*tt - 2.0f*t; float tx = 0.5f * (points[p0].x * q1 + points[p1].x * q2 + points[p2].x * q3 + points[p3].x * q4); float ty = 0.5f * (points[p0].y * q1 + points[p1].y * q2 + points[p2].y * q3 + points[p3].y * q4); return{ tx, ty }; } float CalculateSegmentLength(int node) { float fLength = 0.0f; float fStepSize = 0.1; sPoint2D old_point, new_point; old_point = GetSplinePoint((float)node); for (float t = 0; t < 1.0f; t += fStepSize) { new_point = GetSplinePoint((float)node + t); fLength += sqrtf((new_point.x - old_point.x)*(new_point.x - old_point.x) + (new_point.y - old_point.y)*(new_point.y - old_point.y)); old_point = new_point; } return fLength; } float GetNormalisedOffset(float p) { // Which node is the base? int i = 0; while (p > points[i].length) { p -= points[i].length; i++; } // The fractional is the offset return (float)i + (p / points[i].length); } void UpdateSplineProperties() { // Use to cache local spline lengths and overall spline length fTotalSplineLength = 0.0f; if (bIsLooped) { // Each node has a succeeding length for (int i = 0; i < points.size(); i++) { points[i].length = CalculateSegmentLength(i); fTotalSplineLength += points[i].length; } } else { for (int i = 1; i < points.size() - 2; i++) { points[i].length = CalculateSegmentLength(i); fTotalSplineLength += points[i].length; } } } void DrawSelf(olcConsoleGameEngine* gfx, float ox, float oy, wchar_t c = 0x2588, short col = 0x000F) { if (bIsLooped) { for (float t = 0; t < (float)points.size() - 0; t += 0.005f) { sPoint2D pos = GetSplinePoint(t); gfx->Draw(pos.x, pos.y, c, col); } } else // Not Looped { for (float t = 0; t < (float)points.size() - 3; t += 0.005f) { sPoint2D pos = GetSplinePoint(t); gfx->Draw(pos.x, pos.y, c, col); } } } }; //////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////// class OneLoneCoder_RacingLine : public olcConsoleGameEngine { public: OneLoneCoder_RacingLine() { m_sAppName = L"Racing Line"; } private: sSpline path, trackLeft, trackRight, racingLine; // Various splines int nNodes = 20; // Number of nodes in spline float fDisplacement[20]; // Displacement along spline node normal int nIterations = 1; float fMarker = 1.0f; int nSelectedNode = -1; vector> vecModelCar; protected: // Called by olcConsoleGameEngine virtual bool OnUserCreate() { for (int i = 0; i < nNodes; i++) { //path.points.push_back( // { 30.0f * sinf((float)i / (float)nNodes * 3.14159f * 2.0f) + ScreenWidth() / 2, // 30.0f * cosf((float)i / (float)nNodes * 3.14159f * 2.0f) + ScreenHeight() / 2 }); // Could use allocation functions for thes now, but just size via // append trackLeft.points.push_back({ 0.0f, 0.0f }); trackRight.points.push_back({ 0.0f, 0.0f }); racingLine.points.push_back({ 0.0f, 0.0f }); } // A hand crafted track path.points = { { 81.8f, 196.0f }, { 108.0f,210.0f }, { 152.0f,216.0f }, { 182.0f,185.6f }, { 190.0f,159.0f }, { 198.0f,122.0f }, { 226.0f,93.0f }, { 224.0f,41.0f }, { 204.0f,15.0f }, { 158.0f,24.0f }, { 146.0f,52.0f }, { 157.0f,93.0f }, { 124.0f,129.0f }, { 83.0f,104.0f }, { 77.0f,62.0f }, { 40.0f,57.0f }, { 21.0f,83.0f }, { 33.0f,145.0f }, { 30.0f,198.0f }, { 48.0f,210.0f } }; vecModelCar = { { 2,0 },{ 0,-1 },{ 0,1 } }; path.UpdateSplineProperties(); return true; } // Called by olcConsoleGameEngine virtual bool OnUserUpdate(float fElapsedTime) { // Clear Screen Fill(0, 0, ScreenWidth(), ScreenHeight(), PIXEL_SOLID, FG_DARK_GREEN); // Handle iteration count if (m_keys[L'A'].bHeld) nIterations++; if (m_keys[L'S'].bHeld) nIterations--; if (nIterations < 0) nIterations = 0; // Check if node is selected with mouse if (GetMouse(0).bPressed) { for (int i = 0; i < path.points.size(); i++) { float d = sqrtf(powf(path.points[i].x - GetMouseX(), 2) + powf(path.points[i].y - GetMouseY(), 2)); if (d < 5.0f) { nSelectedNode = i; break; } } } if (GetMouse(0).bReleased) nSelectedNode = -1; // Move selected node if (GetMouse(0).bHeld && nSelectedNode >= 0) { path.points[nSelectedNode].x = GetMouseX(); path.points[nSelectedNode].y = GetMouseY(); path.UpdateSplineProperties(); } // Move car around racing line fMarker += 2.0f * fElapsedTime; if (fMarker >= (float)racingLine.fTotalSplineLength) fMarker -= (float)racingLine.fTotalSplineLength; // Calculate track boundary points float fTrackWidth = 10.0f; for (int i = 0; i < path.points.size(); i++) { sPoint2D p1 = path.GetSplinePoint(i); sPoint2D g1 = path.GetSplineGradient(i); float glen = sqrtf(g1.x*g1.x + g1.y*g1.y); trackLeft.points[i].x = p1.x + fTrackWidth * (-g1.y / glen); trackLeft.points[i].y = p1.y + fTrackWidth * ( g1.x / glen); trackRight.points[i].x = p1.x - fTrackWidth * (-g1.y / glen); trackRight.points[i].y = p1.y - fTrackWidth * (g1.x / glen); } // Draw Track float fRes = 0.2f; for (float t = 0.0f; t < path.points.size(); t += fRes) { sPoint2D pl1 = trackLeft.GetSplinePoint(t); sPoint2D pr1 = trackRight.GetSplinePoint(t); sPoint2D pl2 = trackLeft.GetSplinePoint(t + fRes); sPoint2D pr2 = trackRight.GetSplinePoint(t + fRes); FillTriangle(pl1.x, pl1.y, pr1.x, pr1.y, pr2.x, pr2.y, PIXEL_SOLID, FG_GREY); FillTriangle(pl1.x, pl1.y, pl2.x, pl2.y, pr2.x, pr2.y, PIXEL_SOLID, FG_GREY); } // Reset racing line for (int i = 0; i < racingLine.points.size(); i++) { racingLine.points[i] = path.points[i]; fDisplacement[i] = 0; } racingLine.UpdateSplineProperties(); for (int n = 0; n < nIterations; n++) { for (int i = 0; i < racingLine.points.size(); i++) { // Get locations of neighbour nodes sPoint2D pointRight = racingLine.points[(i + 1) % racingLine.points.size()]; sPoint2D pointLeft = racingLine.points[(i + racingLine.points.size() - 1) % racingLine.points.size()]; sPoint2D pointMiddle = racingLine.points[i]; // Create vectors to neighbours sPoint2D vectorLeft = { pointLeft.x - pointMiddle.x, pointLeft.y - pointMiddle.y }; sPoint2D vectorRight = { pointRight.x - pointMiddle.x, pointRight.y - pointMiddle.y }; // Normalise neighbours float lengthLeft = sqrtf(vectorLeft.x*vectorLeft.x + vectorLeft.y*vectorLeft.y); sPoint2D leftn = { vectorLeft.x / lengthLeft, vectorLeft.y / lengthLeft }; float lengthRight = sqrtf(vectorRight.x*vectorRight.x + vectorRight.y*vectorRight.y); sPoint2D rightn = { vectorRight.x / lengthRight, vectorRight.y / lengthRight }; // Add together to create bisector vector sPoint2D vectorSum = { rightn.x + leftn.x, rightn.y + leftn.y }; float len = sqrtf(vectorSum.x*vectorSum.x + vectorSum.y*vectorSum.y); vectorSum.x /= len; vectorSum.y /= len; // Get point gradient and normalise sPoint2D g = path.GetSplineGradient(i); float glen = sqrtf(g.x*g.x + g.y*g.y); g.x /= glen; g.y /= glen; // Project required correction onto point tangent to give displacment float dp = -g.y*vectorSum.x + g.x * vectorSum.y; // Shortest path fDisplacement[i] += (dp * 0.3f); // Curvature //fDisplacement[(i + 1) % racingLine.points.size()] += dp * -0.2f; //fDisplacement[(i - 1 + racingLine.points.size()) % racingLine.points.size()] += dp * -0.2f; } // Clamp displaced points to track width for (int i = 0; i < racingLine.points.size(); i++) { if (fDisplacement[i] >= fTrackWidth) fDisplacement[i] = fTrackWidth; if (fDisplacement[i] <= -fTrackWidth) fDisplacement[i] = -fTrackWidth; sPoint2D g = path.GetSplineGradient(i); float glen = sqrtf(g.x*g.x + g.y*g.y); g.x /= glen; g.y /= glen; racingLine.points[i].x = path.points[i].x + -g.y * fDisplacement[i]; racingLine.points[i].y = path.points[i].y + g.x * fDisplacement[i]; } } path.DrawSelf(this, 0, 0); //trackLeft.DrawSelf(this, 0, 0); //trackRight.DrawSelf(this, 0, 0); racingLine.UpdateSplineProperties(); racingLine.DrawSelf(this, 0, 0, PIXEL_SOLID, FG_BLUE); for (auto i : path.points) Fill(i.x - 1, i.y - 1, i.x + 2, i.y + 2, PIXEL_SOLID, FG_RED); sPoint2D car_p = racingLine.GetSplinePoint(fMarker); sPoint2D car_g = racingLine.GetSplineGradient(fMarker); DrawWireFrameModel(vecModelCar, car_p.x, car_p.y, atan2f(car_g.y, car_g.x), 4.0f, FG_BLACK); return true; } }; int main() { OneLoneCoder_RacingLine demo; demo.ConstructConsole(256, 240, 4, 4); demo.Start(); return 0; }