/* OneLoneCoder.com - PathFinding A* "No more getting lost..." - @Javidx9 License ~~~~~~~ Copyright (C) 2018 Javidx9 This program comes with ABSOLUTELY NO WARRANTY. This is free software, and you are welcome to redistribute it under certain conditions; See license for details. Original works located at: https://www.github.com/onelonecoder https://www.onelonecoder.com https://www.youtube.com/javidx9 GNU GPLv3 https://github.com/OneLoneCoder/videos/blob/master/LICENSE From Javidx9 :) ~~~~~~~~~~~~~~~ Hello! Ultimately I don't care what you use this for. It's intended to be educational, and perhaps to the oddly minded - a little bit of fun. Please hack this, change it and use it in any way you see fit. You acknowledge that I am not responsible for anything bad that happens as a result of your actions. However this code is protected by GNU GPLv3, see the license in the github repo. This means you must attribute me if you use it. You can view this license here: https://github.com/OneLoneCoder/videos/blob/master/LICENSE Cheers! Background ~~~~~~~~~~ The A* path finding algorithm is a widely used and powerful shortest path finding node traversal algorithm. A heuristic is used to bias the algorithm towards success. This code is probably more interesting than the video. :-/ Author ~~~~~~ Twitter: @javidx9 Blog: www.onelonecoder.com Video: ~~~~~~ https://youtu.be/icZj67PTFhc Last Updated: 08/10/2017 */ #include #include #include using namespace std; #include "olcConsoleGameEngine.h" class OneLoneCoder_PathFinding : public olcConsoleGameEngine { public: OneLoneCoder_PathFinding() { m_sAppName = L"Path Finding"; } private: struct sNode { bool bObstacle = false; // Is the node an obstruction? bool bVisited = false; // Have we searched this node before? float fGlobalGoal; // Distance to goal so far float fLocalGoal; // Distance to goal if we took the alternative route int x; // Nodes position in 2D space int y; vector vecNeighbours; // Connections to neighbours sNode* parent; // Node connecting to this node that offers shortest parent }; sNode *nodes = nullptr; int nMapWidth = 16; int nMapHeight = 16; sNode *nodeStart = nullptr; sNode *nodeEnd = nullptr; protected: virtual bool OnUserCreate() { // Create a 2D array of nodes - this is for convenience of rendering and construction // and is not required for the algorithm to work - the nodes could be placed anywhere // in any space, in multiple dimensions... nodes = new sNode[nMapWidth * nMapHeight]; for (int x = 0; x < nMapWidth; x++) for (int y = 0; y < nMapHeight; y++) { nodes[y * nMapWidth + x].x = x; // ...because we give each node its own coordinates nodes[y * nMapWidth + x].y = y; nodes[y * nMapWidth + x].bObstacle = false; nodes[y * nMapWidth + x].parent = nullptr; nodes[y * nMapWidth + x].bVisited = false; } // Create connections - in this case nodes are on a regular grid for (int x = 0; x < nMapWidth; x++) for (int y = 0; y < nMapHeight; y++) { if(y>0) nodes[y*nMapWidth + x].vecNeighbours.push_back(&nodes[(y - 1) * nMapWidth + (x + 0)]); if(y0) nodes[y*nMapWidth + x].vecNeighbours.push_back(&nodes[(y + 0) * nMapWidth + (x - 1)]); if(x0 && x>0) nodes[y*nMapWidth + x].vecNeighbours.push_back(&nodes[(y - 1) * nMapWidth + (x - 1)]); if (y0) nodes[y*nMapWidth + x].vecNeighbours.push_back(&nodes[(y + 1) * nMapWidth + (x - 1)]); if (y>0 && xx - b->x)*(a->x - b->x) + (a->y - b->y)*(a->y - b->y)); }; auto heuristic = [distance](sNode* a, sNode* b) // So we can experiment with heuristic { return distance(a, b); }; // Setup starting conditions sNode *nodeCurrent = nodeStart; nodeStart->fLocalGoal = 0.0f; nodeStart->fGlobalGoal = heuristic(nodeStart, nodeEnd); // Add start node to not tested list - this will ensure it gets tested. // As the algorithm progresses, newly discovered nodes get added to this // list, and will themselves be tested later list listNotTestedNodes; listNotTestedNodes.push_back(nodeStart); // if the not tested list contains nodes, there may be better paths // which have not yet been explored. However, we will also stop // searching when we reach the target - there may well be better // paths but this one will do - it wont be the longest. while (!listNotTestedNodes.empty() && nodeCurrent != nodeEnd)// Find absolutely shortest path // && nodeCurrent != nodeEnd) { // Sort Untested nodes by global goal, so lowest is first listNotTestedNodes.sort([](const sNode* lhs, const sNode* rhs){ return lhs->fGlobalGoal < rhs->fGlobalGoal; } ); // Front of listNotTestedNodes is potentially the lowest distance node. Our // list may also contain nodes that have been visited, so ditch these... while(!listNotTestedNodes.empty() && listNotTestedNodes.front()->bVisited) listNotTestedNodes.pop_front(); // ...or abort because there are no valid nodes left to test if (listNotTestedNodes.empty()) break; nodeCurrent = listNotTestedNodes.front(); nodeCurrent->bVisited = true; // We only explore a node once // Check each of this node's neighbours... for (auto nodeNeighbour : nodeCurrent->vecNeighbours) { // ... and only if the neighbour is not visited and is // not an obstacle, add it to NotTested List if (!nodeNeighbour->bVisited && nodeNeighbour->bObstacle == 0) listNotTestedNodes.push_back(nodeNeighbour); // Calculate the neighbours potential lowest parent distance float fPossiblyLowerGoal = nodeCurrent->fLocalGoal + distance(nodeCurrent, nodeNeighbour); // If choosing to path through this node is a lower distance than what // the neighbour currently has set, update the neighbour to use this node // as the path source, and set its distance scores as necessary if (fPossiblyLowerGoal < nodeNeighbour->fLocalGoal) { nodeNeighbour->parent = nodeCurrent; nodeNeighbour->fLocalGoal = fPossiblyLowerGoal; // The best path length to the neighbour being tested has changed, so // update the neighbour's score. The heuristic is used to globally bias // the path algorithm, so it knows if its getting better or worse. At some // point the algo will realise this path is worse and abandon it, and then go // and search along the next best path. nodeNeighbour->fGlobalGoal = nodeNeighbour->fLocalGoal + heuristic(nodeNeighbour, nodeEnd); } } } return true; } virtual bool OnUserUpdate(float fElapsedTime) { int nNodeSize = 9; int nNodeBorder = 2; // Use integer division to nicely get cursor position in node space int nSelectedNodeX = m_mousePosX / nNodeSize; int nSelectedNodeY = m_mousePosY / nNodeSize; if (m_mouse[0].bReleased) // Use mouse to draw maze, shift and ctrl to place start and end { if(nSelectedNodeX >=0 && nSelectedNodeX < nMapWidth) if (nSelectedNodeY >= 0 && nSelectedNodeY < nMapHeight) { if (m_keys[VK_SHIFT].bHeld) nodeStart = &nodes[nSelectedNodeY * nMapWidth + nSelectedNodeX]; else if (m_keys[VK_CONTROL].bHeld) nodeEnd = &nodes[nSelectedNodeY * nMapWidth + nSelectedNodeX]; else nodes[nSelectedNodeY * nMapWidth + nSelectedNodeX].bObstacle = !nodes[nSelectedNodeY * nMapWidth + nSelectedNodeX].bObstacle; Solve_AStar(); // Solve in "real-time" gives a nice effect } } // Draw Connections First - lines from this nodes position to its // connected neighbour node positions Fill(0, 0, ScreenWidth(), ScreenHeight(), L' '); for (int x = 0; x < nMapWidth; x++) for (int y = 0; y < nMapHeight; y++) { for (auto n : nodes[y*nMapWidth + x].vecNeighbours) { DrawLine(x*nNodeSize + nNodeSize / 2, y*nNodeSize + nNodeSize / 2, n->x*nNodeSize + nNodeSize / 2, n->y*nNodeSize + nNodeSize / 2, PIXEL_SOLID, FG_DARK_BLUE); } } // Draw Nodes on top for (int x = 0; x < nMapWidth; x++) for (int y = 0; y < nMapHeight; y++) { Fill(x*nNodeSize + nNodeBorder, y*nNodeSize + nNodeBorder, (x + 1)*nNodeSize - nNodeBorder, (y + 1)*nNodeSize - nNodeBorder, PIXEL_HALF, nodes[y * nMapWidth + x].bObstacle ? FG_WHITE : FG_BLUE); if (nodes[y * nMapWidth + x].bVisited) Fill(x*nNodeSize + nNodeBorder, y*nNodeSize + nNodeBorder, (x + 1)*nNodeSize - nNodeBorder, (y + 1)*nNodeSize - nNodeBorder, PIXEL_SOLID, FG_BLUE); if(&nodes[y * nMapWidth + x] == nodeStart) Fill(x*nNodeSize + nNodeBorder, y*nNodeSize + nNodeBorder, (x + 1)*nNodeSize - nNodeBorder, (y + 1)*nNodeSize - nNodeBorder, PIXEL_SOLID, FG_GREEN); if(&nodes[y * nMapWidth + x] == nodeEnd) Fill(x*nNodeSize + nNodeBorder, y*nNodeSize + nNodeBorder, (x + 1)*nNodeSize - nNodeBorder, (y + 1)*nNodeSize - nNodeBorder, PIXEL_SOLID, FG_RED); } // Draw Path by starting ath the end, and following the parent node trail // back to the start - the start node will not have a parent path to follow if (nodeEnd != nullptr) { sNode *p = nodeEnd; while (p->parent != nullptr) { DrawLine(p->x*nNodeSize + nNodeSize / 2, p->y*nNodeSize + nNodeSize / 2, p->parent->x*nNodeSize + nNodeSize / 2, p->parent->y*nNodeSize + nNodeSize / 2, PIXEL_SOLID, FG_YELLOW); // Set next node to this node's parent p = p->parent; } } return true; } }; int main() { OneLoneCoder_PathFinding game; game.ConstructConsole(160, 160, 6, 6); game.Start(); return 0; }