/* OneLoneCoder.com - Programming Balls! #2 Circle Vs Edge Collisions "...totally overkill for pong..." - @Javidx9 License ~~~~~~~ One Lone Coder Console Game Engine Copyright (C) 2018 Javidx9 This program comes with ABSOLUTELY NO WARRANTY. This is free software, and you are welcome to redistribute it under certain conditions; See license for details. Original works located at: https://www.github.com/onelonecoder https://www.onelonecoder.com https://www.youtube.com/javidx9 GNU GPLv3 https://github.com/OneLoneCoder/videos/blob/master/LICENSE From Javidx9 :) ~~~~~~~~~~~~~~~ Hello! Ultimately I don't care what you use this for. It's intended to be educational, and perhaps to the oddly minded - a little bit of fun. Please hack this, change it and use it in any way you see fit. You acknowledge that I am not responsible for anything bad that happens as a result of your actions. However this code is protected by GNU GPLv3, see the license in the github repo. This means you must attribute me if you use it. You can view this license here: https://github.com/OneLoneCoder/videos/blob/master/LICENSE Cheers! Background ~~~~~~~~~~ Collision detection engines can get quite complicated. This program shows the interactions between circular objects of different sizes and masses. Use Left mouse button to select and drag a ball to examin static collisions, and use Right mouse button to apply velocity to the balls as if using a pool/snooker/billiards cue. Author ~~~~~~ Twitter: @javidx9 Blog: www.onelonecoder.com Twitch: https://www.twitch.tv/javidx9 Discord: https://discord.gg/WhwHUMV Video: ~~~~~~ Part #1 https://youtu.be/LPzyNOHY3A4 Part #2 https://youtu.be/ebq7L2Wtbl4 Last Updated: 18/02/2017 */ #include #include using namespace std; #include "olcConsoleGameEngine.h" struct sBall { float px, py; float vx, vy; float ax, ay; float ox, oy; float radius; float mass; float friction; int score; int id; float fSimTimeRemaining; }; struct sLineSegment { float sx, sy; float ex, ey; float radius; }; class CirclePhysics : public olcConsoleGameEngine { public: CirclePhysics() { m_sAppName = L"Circles V Edges"; } private: vector vecBalls; vector vecLines; vector> modelCircle; sBall* pSelectedBall = nullptr; olcSprite *spriteBalls = nullptr; sLineSegment* pSelectedLine = nullptr; bool bSelectedLineStart = false; void AddBall(float x, float y, float r = 5.0f, int s = 0) { sBall b; b.px = x; b.py = y; b.vx = 0; b.vy = 0; b.ax = 0; b.ay = 0; b.ox = 0; b.oy = 0; b.radius = r; b.mass = r * 10.0f; b.friction = 0.0f; b.score = s; b.fSimTimeRemaining = 0.0f; b.id = vecBalls.size(); vecBalls.emplace_back(b); } public: bool OnUserCreate() { float fBallRadius = 4.0f; for (int i = 0; i <100; i++) AddBall(((float)rand()/(float)RAND_MAX) * ScreenWidth(), ((float)rand() / (float)RAND_MAX) * ScreenHeight(), fBallRadius); AddBall(28.0f, 33.0, fBallRadius * 3); AddBall(28.0f, 35.0, fBallRadius * 2); float fLineRadius = 4.0f; vecLines.push_back({ 12.0f, 4.0f, 64.0f, 4.0f, fLineRadius }); vecLines.push_back({ 76.0f, 4.0f, 132.0f, 4.0f, fLineRadius }); vecLines.push_back({ 12.0f, 68.0f, 64.0f, 68.0f, fLineRadius }); vecLines.push_back({ 76.0f, 68.0f, 132.0f, 68.0f, fLineRadius }); vecLines.push_back({ 4.0f, 12.0f, 4.0f, 60.0f, fLineRadius }); vecLines.push_back({ 140.0f, 12.0f, 140.0f, 60.0f, fLineRadius }); return true; } bool OnUserUpdate(float fElapsedTime) { auto DoCirclesOverlap = [](float x1, float y1, float r1, float x2, float y2, float r2) { return fabs((x1 - x2)*(x1 - x2) + (y1 - y2)*(y1 - y2)) <= ((r1 + r2) * (r1 + r2)); }; auto IsPointInCircle = [](float x1, float y1, float r1, float px, float py) { return fabs((x1 - px)*(x1 - px) + (y1 - py)*(y1 - py)) < (r1 * r1); }; if (m_mouse[0].bPressed) { // Check for selected ball pSelectedBall = nullptr; for (auto &ball : vecBalls) { if (IsPointInCircle(ball.px, ball.py, ball.radius, m_mousePosX, m_mousePosY)) { pSelectedBall = &ball; break; } } // Check for selected line segment end pSelectedLine = nullptr; for (auto &line : vecLines) { if (IsPointInCircle(line.sx, line.sy, line.radius, m_mousePosX, m_mousePosY)) { pSelectedLine = &line; bSelectedLineStart = true; break; } if (IsPointInCircle(line.ex, line.ey, line.radius, m_mousePosX, m_mousePosY)) { pSelectedLine = &line; bSelectedLineStart = false; break; } } } if (m_mouse[0].bHeld) { if (pSelectedLine != nullptr) { if (bSelectedLineStart) { pSelectedLine->sx = GetMouseX(); pSelectedLine->sy = GetMouseY(); } else { pSelectedLine->ex = GetMouseX(); pSelectedLine->ey = GetMouseY(); } } } if (m_mouse[0].bReleased) { if (pSelectedBall != nullptr) { // Apply velocity pSelectedBall->vx = 5.0f * ((pSelectedBall->px) - m_mousePosX); pSelectedBall->vy = 5.0f * ((pSelectedBall->py) - m_mousePosY); } pSelectedBall = nullptr; pSelectedLine = nullptr; } if (m_mouse[1].bHeld) { for (auto &ball : vecBalls) { ball.vx += (m_mousePosX - ball.px) * 0.01f; ball.vy += (m_mousePosY - ball.py) * 0.01f; } } vector> vecCollidingPairs; vector vecFakeBalls; // Threshold indicating stability of object float fStable = 0.05f; // Multiple simulation updates with small time steps permit more accurate physics // and realistic results at the expense of CPU time of course int nSimulationUpdates = 4; // Multiple collision trees require more steps to resolve. Normally we would // continue simulation until the object has no simulation time left for this // epoch, however this is risky as the system may never find stability, so we // can clamp it here int nMaxSimulationSteps = 15; // Break up the frame elapsed time into smaller deltas for each simulation update float fSimElapsedTime = fElapsedTime / (float)nSimulationUpdates; // Main simulation loop for (int i = 0; i < nSimulationUpdates; i++) { // Set all balls time to maximum for this epoch for (auto &ball : vecBalls) ball.fSimTimeRemaining = fSimElapsedTime; // Erode simulation time on a per objec tbasis, depending upon what happens // to it during its journey through this epoch for (int j = 0; j < nMaxSimulationSteps; j++) { // Update Ball Positions for (auto &ball : vecBalls) { if (ball.fSimTimeRemaining > 0.0f) { ball.ox = ball.px; // Store original position this epoch ball.oy = ball.py; ball.ax = -ball.vx * 0.8f; // Apply drag and gravity ball.ay = -ball.vy * 0.8f + 100.0f; ball.vx += ball.ax * ball.fSimTimeRemaining; // Update Velocity ball.vy += ball.ay * ball.fSimTimeRemaining; ball.px += ball.vx * ball.fSimTimeRemaining; // Update position ball.py += ball.vy * ball.fSimTimeRemaining; // Crudely wrap balls to screen - note this cause issues when collisions occur on screen boundaries if (ball.px < 0) ball.px += (float)ScreenWidth(); if (ball.px >= ScreenWidth()) ball.px -= (float)ScreenWidth(); if (ball.py < 0) ball.py += (float)ScreenHeight(); if (ball.py >= ScreenHeight()) ball.py -= (float)ScreenHeight(); // Stop ball when velocity is neglible if (fabs(ball.vx*ball.vx + ball.vy*ball.vy) < fStable) { ball.vx = 0; ball.vy = 0; } } } // Work out static collisions with walls and displace balls so no overlaps for (auto &ball : vecBalls) { float fDeltaTime = ball.fSimTimeRemaining; // Against Edges for (auto &edge : vecLines) { // Check that line formed by velocity vector, intersects with line segment float fLineX1 = edge.ex - edge.sx; float fLineY1 = edge.ey - edge.sy; float fLineX2 = ball.px - edge.sx; float fLineY2 = ball.py - edge.sy; float fEdgeLength = fLineX1 * fLineX1 + fLineY1 * fLineY1; // This is nifty - It uses the DP of the line segment vs the line to the object, to work out // how much of the segment is in the "shadow" of the object vector. The min and max clamp // this to lie between 0 and the line segment length, which is then normalised. We can // use this to calculate the closest point on the line segment float t = max(0, min(fEdgeLength, (fLineX1 * fLineX2 + fLineY1 * fLineY2))) / fEdgeLength; // Which we do here float fClosestPointX = edge.sx + t * fLineX1; float fClosestPointY = edge.sy + t * fLineY1; // And once we know the closest point, we can check if the ball has collided with the segment in the // same way we check if two balls have collided float fDistance = sqrtf((ball.px - fClosestPointX)*(ball.px - fClosestPointX) + (ball.py - fClosestPointY)*(ball.py - fClosestPointY)); if (fDistance <= (ball.radius + edge.radius)) { // Collision has occurred - treat collision point as a ball that cannot move. To make this // compatible with the dynamic resolution code below, we add a fake ball with an infinite mass // so it behaves like a solid object when the momentum calculations are performed sBall *fakeball = new sBall(); fakeball->radius = edge.radius; fakeball->mass = ball.mass * 0.8f; fakeball->px = fClosestPointX; fakeball->py = fClosestPointY; fakeball->vx = -ball.vx; // We will use these later to allow the lines to impart energy into ball fakeball->vy = -ball.vy; // if the lines are moving, i.e. like pinball flippers // Store Fake Ball vecFakeBalls.push_back(fakeball); // Add collision to vector of collisions for dynamic resolution vecCollidingPairs.push_back({ &ball, fakeball }); // Calculate displacement required float fOverlap = 1.0f * (fDistance - ball.radius - fakeball->radius); // Displace Current Ball away from collision ball.px -= fOverlap * (ball.px - fakeball->px) / fDistance; ball.py -= fOverlap * (ball.py - fakeball->py) / fDistance; } } // Against other balls for (auto &target : vecBalls) { if (ball.id != target.id) // Do not check against self { if (DoCirclesOverlap(ball.px, ball.py, ball.radius, target.px, target.py, target.radius)) { // Collision has occured vecCollidingPairs.push_back({ &ball, &target }); // Distance between ball centers float fDistance = sqrtf((ball.px - target.px)*(ball.px - target.px) + (ball.py - target.py)*(ball.py - target.py)); // Calculate displacement required float fOverlap = 0.5f * (fDistance - ball.radius - target.radius); // Displace Current Ball away from collision ball.px -= fOverlap * (ball.px - target.px) / fDistance; ball.py -= fOverlap * (ball.py - target.py) / fDistance; // Displace Target Ball away from collision - Note, this should affect the timing of the target ball // and it does, but this is absorbed by the target ball calculating its own time delta later on target.px += fOverlap * (ball.px - target.px) / fDistance; target.py += fOverlap * (ball.py - target.py) / fDistance; } } } // Time displacement - we knew the velocity of the ball, so we can estimate the distance it should have covered // however due to collisions it could not do the full distance, so we look at the actual distance to the collision // point and calculate how much time that journey would have taken using the speed of the object. Therefore // we can now work out how much time remains in that timestep. float fIntendedSpeed = sqrtf(ball.vx * ball.vx + ball.vy * ball.vy); float fIntendedDistance = fIntendedSpeed * ball.fSimTimeRemaining; float fActualDistance = sqrtf((ball.px - ball.ox)*(ball.px - ball.ox) + (ball.py - ball.oy)*(ball.py - ball.oy)); float fActualTime = fActualDistance / fIntendedSpeed; // After static resolution, there may be some time still left for this epoch, so allow simulation to continue ball.fSimTimeRemaining = ball.fSimTimeRemaining - fActualTime; } // Now work out dynamic collisions float fEfficiency = 1.00f; for (auto c : vecCollidingPairs) { sBall *b1 = c.first, *b2 = c.second; // Distance between balls float fDistance = sqrtf((b1->px - b2->px)*(b1->px - b2->px) + (b1->py - b2->py)*(b1->py - b2->py)); // Normal float nx = (b2->px - b1->px) / fDistance; float ny = (b2->py - b1->py) / fDistance; // Tangent float tx = -ny; float ty = nx; // Dot Product Tangent float dpTan1 = b1->vx * tx + b1->vy * ty; float dpTan2 = b2->vx * tx + b2->vy * ty; // Dot Product Normal float dpNorm1 = b1->vx * nx + b1->vy * ny; float dpNorm2 = b2->vx * nx + b2->vy * ny; // Conservation of momentum in 1D float m1 = fEfficiency * (dpNorm1 * (b1->mass - b2->mass) + 2.0f * b2->mass * dpNorm2) / (b1->mass + b2->mass); float m2 = fEfficiency * (dpNorm2 * (b2->mass - b1->mass) + 2.0f * b1->mass * dpNorm1) / (b1->mass + b2->mass); // Update ball velocities b1->vx = tx * dpTan1 + nx * m1; b1->vy = ty * dpTan1 + ny * m1; b2->vx = tx * dpTan2 + nx * m2; b2->vy = ty * dpTan2 + ny * m2; } // Remove collisions vecCollidingPairs.clear(); // Remove fake balls for (auto &b : vecFakeBalls) delete b; vecFakeBalls.clear(); } } // Clear Screen Fill(0, 0, ScreenWidth(), ScreenHeight(), ' '); // Draw Lines for (auto line : vecLines) { FillCircle(line.sx, line.sy, line.radius, PIXEL_HALF, FG_WHITE); FillCircle(line.ex, line.ey, line.radius, PIXEL_HALF, FG_WHITE); float nx = -(line.ey - line.sy); float ny = (line.ex - line.sx); float d = sqrt(nx*nx + ny * ny); nx /= d; ny /= d; DrawLine((line.sx + nx * line.radius), (line.sy + ny * line.radius), (line.ex + nx * line.radius), (line.ey + ny * line.radius)); DrawLine((line.sx - nx * line.radius), (line.sy - ny * line.radius), (line.ex - nx * line.radius), (line.ey - ny * line.radius)); } // Draw Balls for (auto ball : vecBalls) FillCircle(ball.px, ball.py, ball.radius, PIXEL_SOLID, FG_RED); // Draw Cue if (pSelectedBall != nullptr) DrawLine(pSelectedBall->px, pSelectedBall->py, m_mousePosX, m_mousePosY, PIXEL_SOLID, FG_BLUE); return true; } }; int main() { CirclePhysics game; if (game.ConstructConsole(320, 240, 4, 4)) game.Start(); else wcout << L"Could not construct console" << endl; return 0; };