/* OneLoneCoder.com - Programming Balls! #1 Circle Vs Circle Collisions "..it's just balls bangin' together init..." - @Javidx9 Disclaimer ~~~~~~~~~~ I don't care what you use this for. It's intended to be educational, and perhaps to the oddly minded - a little bit of fun. Please hack this, change it and use it in any way you see fit. BUT, you acknowledge that I am not responsible for anything bad that happens as a result of your actions. However, if good stuff happens, I would appreciate a shout out, or at least give the blog some publicity for me. Cheers! Background ~~~~~~~~~~ Collision detection engines can get quite complicated. This program shows the interactions between circular objects of different sizes and masses. Use Left mouse button to select and drag a ball to examin static collisions, and use Right mouse button to apply velocity to the balls as if using a pool/snooker/billiards cue. Author ~~~~~~ Twitter: @javidx9 Blog: www.onelonecoder.com Video: ~~~~~~ Part #1 https://youtu.be/LPzyNOHY3A4 Last Updated: 21/01/2017 */ #include #include using namespace std; #include "olcConsoleGameEngine.h" struct sBall { float px, py; float vx, vy; float ax, ay; float radius; float mass; int id; }; class CirclePhysics : public olcConsoleGameEngine { public: CirclePhysics() { m_sAppName = L"Circle Physics"; } private: vector> modelCircle; vector vecBalls; sBall *pSelectedBall = nullptr; // Adds a ball to the vector void AddBall(float x, float y, float r = 5.0f) { sBall b; b.px = x; b.py = y; b.vx = 0; b.vy = 0; b.ax = 0; b.ay = 0; b.radius = r; b.mass = r * 10.0f; b.id = vecBalls.size(); vecBalls.emplace_back(b); } public: bool OnUserCreate() { // Define Circle Model modelCircle.push_back({ 0.0f, 0.0f }); int nPoints = 20; for (int i = 0; i < nPoints; i++) modelCircle.push_back({ cosf(i / (float)(nPoints - 1) * 2.0f * 3.14159f) , sinf(i / (float)(nPoints - 1) * 2.0f * 3.14159f) }); float fDefaultRad = 8.0f; //AddBall(ScreenWidth() * 0.25f, ScreenHeight() * 0.5f, fDefaultRad); //AddBall(ScreenWidth() * 0.75f, ScreenHeight() * 0.5f, fDefaultRad); // Add 10 Random Balls for (int i = 0; i <10; i++) AddBall(rand() % ScreenWidth(), rand() % ScreenHeight(), rand() % 16 + 2); return true; } bool OnUserUpdate(float fElapsedTime) { auto DoCirclesOverlap = [](float x1, float y1, float r1, float x2, float y2, float r2) { return fabs((x1 - x2)*(x1 - x2) + (y1 - y2)*(y1 - y2)) <= (r1 + r2)*(r1 + r2); }; auto IsPointInCircle = [](float x1, float y1, float r1, float px, float py) { return fabs((x1 - px)*(x1 - px) + (y1 - py)*(y1 - py)) < (r1 * r1); }; if (m_mouse[0].bPressed || m_mouse[1].bPressed) { pSelectedBall = nullptr; for (auto &ball : vecBalls) { if (IsPointInCircle(ball.px, ball.py, ball.radius, m_mousePosX, m_mousePosY)) { pSelectedBall = &ball; break; } } } if (m_mouse[0].bHeld) { if (pSelectedBall != nullptr) { pSelectedBall->px = m_mousePosX; pSelectedBall->py = m_mousePosY; } } if (m_mouse[0].bReleased) { pSelectedBall = nullptr; } if (m_mouse[1].bReleased) { if (pSelectedBall != nullptr) { // Apply velocity pSelectedBall->vx = 5.0f * ((pSelectedBall->px) - (float)m_mousePosX); pSelectedBall->vy = 5.0f * ((pSelectedBall->py) - (float)m_mousePosY); } pSelectedBall = nullptr; } vector> vecCollidingPairs; // Update Ball Positions for (auto &ball : vecBalls) { // Add Drag to emulate rolling friction ball.ax = -ball.vx * 0.8f; ball.ay = -ball.vy * 0.8f; // Update ball physics ball.vx += ball.ax * fElapsedTime; ball.vy += ball.ay * fElapsedTime; ball.px += ball.vx * fElapsedTime; ball.py += ball.vy * fElapsedTime; // Wrap the balls around screen if (ball.px < 0) ball.px += (float)ScreenWidth(); if (ball.px >= ScreenWidth()) ball.px -= (float)ScreenWidth(); if (ball.py < 0) ball.py += (float)ScreenHeight(); if (ball.py >= ScreenHeight()) ball.py -= (float)ScreenHeight(); // Clamp velocity near zero if (fabs(ball.vx*ball.vx + ball.vy*ball.vy) < 0.01f) { ball.vx = 0; ball.vy = 0; } } // Static collisions, i.e. overlap for (auto &ball : vecBalls) { for (auto &target : vecBalls) { if (ball.id != target.id) { if (DoCirclesOverlap(ball.px, ball.py, ball.radius, target.px, target.py, target.radius)) { // Collision has occured vecCollidingPairs.push_back({ &ball, &target }); // Distance between ball centers float fDistance = sqrtf((ball.px - target.px)*(ball.px - target.px) + (ball.py - target.py)*(ball.py - target.py)); // Calculate displacement required float fOverlap = 0.5f * (fDistance - ball.radius - target.radius); // Displace Current Ball away from collision ball.px -= fOverlap * (ball.px - target.px) / fDistance; ball.py -= fOverlap * (ball.py - target.py) / fDistance; // Displace Target Ball away from collision target.px += fOverlap * (ball.px - target.px) / fDistance; target.py += fOverlap * (ball.py - target.py) / fDistance; } } } } // Now work out dynamic collisions for (auto c : vecCollidingPairs) { sBall *b1 = c.first; sBall *b2 = c.second; // Distance between balls float fDistance = sqrtf((b1->px - b2->px)*(b1->px - b2->px) + (b1->py - b2->py)*(b1->py - b2->py)); // Normal float nx = (b2->px - b1->px) / fDistance; float ny = (b2->py - b1->py) / fDistance; // Tangent float tx = -ny; float ty = nx; // Dot Product Tangent float dpTan1 = b1->vx * tx + b1->vy * ty; float dpTan2 = b2->vx * tx + b2->vy * ty; // Dot Product Normal float dpNorm1 = b1->vx * nx + b1->vy * ny; float dpNorm2 = b2->vx * nx + b2->vy * ny; // Conservation of momentum in 1D float m1 = (dpNorm1 * (b1->mass - b2->mass) + 2.0f * b2->mass * dpNorm2) / (b1->mass + b2->mass); float m2 = (dpNorm2 * (b2->mass - b1->mass) + 2.0f * b1->mass * dpNorm1) / (b1->mass + b2->mass); // Update ball velocities b1->vx = tx * dpTan1 + nx * m1; b1->vy = ty * dpTan1 + ny * m1; b2->vx = tx * dpTan2 + nx * m2; b2->vy = ty * dpTan2 + ny * m2; // Wikipedia Version - Maths is smarter but same //float kx = (b1->vx - b2->vx); //float ky = (b1->vy - b2->vy); //float p = 2.0 * (nx * kx + ny * ky) / (b1->mass + b2->mass); //b1->vx = b1->vx - p * b2->mass * nx; //b1->vy = b1->vy - p * b2->mass * ny; //b2->vx = b2->vx + p * b1->mass * nx; //b2->vy = b2->vy + p * b1->mass * ny; } // Clear Screen Fill(0, 0, ScreenWidth(), ScreenHeight(), ' '); // Draw Balls for (auto ball : vecBalls) DrawWireFrameModel(modelCircle, ball.px, ball.py, atan2f(ball.vy, ball.vx), ball.radius, FG_WHITE); // Draw static collisions for (auto c : vecCollidingPairs) DrawLine(c.first->px, c.first->py, c.second->px, c.second->py, PIXEL_SOLID, FG_RED); // Draw Cue if (pSelectedBall != nullptr) DrawLine(pSelectedBall->px, pSelectedBall->py, m_mousePosX, m_mousePosY, PIXEL_SOLID, FG_BLUE); return true; } }; int main() { CirclePhysics game; if (game.ConstructConsole(160, 120, 8, 8)) game.Start(); else wcout << L"Could not construct console" << endl; return 0; };