/* OneLoneCoder.com - What Is Perlin Noise? "Mountains, Clouds, Worms Landscapes?" - @Javidx9 License ~~~~~~~ Copyright (C) 2018 Javidx9 This program comes with ABSOLUTELY NO WARRANTY. This is free software, and you are welcome to redistribute it under certain conditions; See license for details. Original works located at: https://www.github.com/onelonecoder https://www.onelonecoder.com https://www.youtube.com/javidx9 GNU GPLv3 https://github.com/OneLoneCoder/videos/blob/master/LICENSE From Javidx9 :) ~~~~~~~~~~~~~~~ Hello! Ultimately I don't care what you use this for. It's intended to be educational, and perhaps to the oddly minded - a little bit of fun. Please hack this, change it and use it in any way you see fit. You acknowledge that I am not responsible for anything bad that happens as a result of your actions. However this code is protected by GNU GPLv3, see the license in the github repo. This means you must attribute me if you use it. You can view this license here: https://github.com/OneLoneCoder/videos/blob/master/LICENSE Cheers! Background ~~~~~~~~~~ Noise is random - a bad thing when trying to procedurally generate content. Perlin noise adds coherence at varying spatial scales which create natural looking noise arrays. Perlin noise can be further processed into all sorts of assets, such as mountains, maps, rooms, textures, data sets. Author ~~~~~~ Twitter: @javidx9 Blog: www.onelonecoder.com Video: ~~~~~~ https://youtu.be/6-0UaeJBumA Last Updated: 29/10/2017 */ #include #include #include using namespace std; #include "olcConsoleGameEngine.h" class OneLoneCoder_PerlinNoiseDemo : public olcConsoleGameEngine { public: OneLoneCoder_PerlinNoiseDemo() { m_sAppName = L"Perlin Noise"; } private: // 2D noise variables int nOutputWidth = 256; int nOutputHeight = 256; float *fNoiseSeed2D = nullptr; float *fPerlinNoise2D = nullptr; // 1D noise variables float *fNoiseSeed1D = nullptr; float *fPerlinNoise1D = nullptr; int nOutputSize = 256; int nOctaveCount = 1; float fScalingBias = 2.0f; int nMode = 1; virtual bool OnUserCreate() { nOutputWidth = ScreenWidth(); nOutputHeight = ScreenHeight(); fNoiseSeed2D = new float[nOutputWidth * nOutputHeight]; fPerlinNoise2D = new float[nOutputWidth * nOutputHeight]; for (int i = 0; i < nOutputWidth * nOutputHeight; i++) fNoiseSeed2D[i] = (float)rand() / (float)RAND_MAX; nOutputSize = ScreenWidth(); fNoiseSeed1D = new float[nOutputSize]; fPerlinNoise1D = new float[nOutputSize]; for (int i = 0; i < nOutputSize; i++) fNoiseSeed1D[i] = (float)rand() / (float)RAND_MAX; return true; } virtual bool OnUserUpdate(float fElapsedTime) { Fill(0, 0, ScreenWidth(), ScreenHeight(), L' '); if (m_keys[VK_SPACE].bReleased) nOctaveCount++; if (m_keys[L'1'].bReleased) nMode = 1; if (m_keys[L'2'].bReleased) nMode = 2; if (m_keys[L'3'].bReleased) nMode = 3; if (m_keys[L'Q'].bReleased) fScalingBias += 0.2f; if (m_keys[L'A'].bReleased) fScalingBias -= 0.2f; if (fScalingBias < 0.2f) fScalingBias = 0.2f; if (nOctaveCount == 9) nOctaveCount = 1; if (nMode == 1) // 1D Noise { if (m_keys[L'Z'].bReleased) // Noise Between 0 and +1 for (int i = 0; i < nOutputSize; i++) fNoiseSeed1D[i] = (float)rand() / (float)RAND_MAX; if (m_keys[L'X'].bReleased) // Noise Between -1 and +1 for (int i = 0; i < nOutputSize; i++) fNoiseSeed1D[i] = 2.0f * ((float)rand() / (float)RAND_MAX) - 1.0f; PerlinNoise1D(nOutputSize, fNoiseSeed1D, nOctaveCount, fScalingBias, fPerlinNoise1D); for (int x = 0; x < nOutputSize; x++) { int y = -(fPerlinNoise1D[x] * (float)ScreenHeight() / 2.0f) + (float)ScreenHeight() / 2.0f; if (y < ScreenHeight() / 2) for (int f = y; f < ScreenHeight() / 2; f++) Draw(x, f, PIXEL_SOLID, FG_GREEN); else for (int f = ScreenHeight() / 2; f <= y; f++) Draw(x, f, PIXEL_SOLID, FG_RED); } } if (nMode == 2) // 2D Noise { if (m_keys[L'Z'].bReleased) // Noise Between 0 and +1 for (int i = 0; i < nOutputWidth * nOutputHeight; i++) fNoiseSeed2D[i] = (float)rand() / (float)RAND_MAX; PerlinNoise2D(nOutputWidth, nOutputHeight, fNoiseSeed2D, nOctaveCount, fScalingBias, fPerlinNoise2D); for (int x = 0; x < nOutputWidth; x++) { for (int y = 0; y < nOutputHeight; y++) { short bg_col, fg_col; wchar_t sym; int pixel_bw = (int)(fPerlinNoise2D[y * nOutputWidth + x] * 12.0f); switch (pixel_bw) { case 0: bg_col = BG_BLACK; fg_col = FG_BLACK; sym = PIXEL_SOLID; break; case 1: bg_col = BG_BLACK; fg_col = FG_DARK_GREY; sym = PIXEL_QUARTER; break; case 2: bg_col = BG_BLACK; fg_col = FG_DARK_GREY; sym = PIXEL_HALF; break; case 3: bg_col = BG_BLACK; fg_col = FG_DARK_GREY; sym = PIXEL_THREEQUARTERS; break; case 4: bg_col = BG_BLACK; fg_col = FG_DARK_GREY; sym = PIXEL_SOLID; break; case 5: bg_col = BG_DARK_GREY; fg_col = FG_GREY; sym = PIXEL_QUARTER; break; case 6: bg_col = BG_DARK_GREY; fg_col = FG_GREY; sym = PIXEL_HALF; break; case 7: bg_col = BG_DARK_GREY; fg_col = FG_GREY; sym = PIXEL_THREEQUARTERS; break; case 8: bg_col = BG_DARK_GREY; fg_col = FG_GREY; sym = PIXEL_SOLID; break; case 9: bg_col = BG_GREY; fg_col = FG_WHITE; sym = PIXEL_QUARTER; break; case 10: bg_col = BG_GREY; fg_col = FG_WHITE; sym = PIXEL_HALF; break; case 11: bg_col = BG_GREY; fg_col = FG_WHITE; sym = PIXEL_THREEQUARTERS; break; case 12: bg_col = BG_GREY; fg_col = FG_WHITE; sym = PIXEL_SOLID; break; } Draw(x, y, sym, fg_col | bg_col); } } } if (nMode == 3) // 2D Noise - colourised { if (m_keys[L'Z'].bReleased) // Noise Between 0 and +1 for (int i = 0; i < nOutputWidth * nOutputHeight; i++) fNoiseSeed2D[i] = (float)rand() / (float)RAND_MAX; PerlinNoise2D(nOutputWidth, nOutputHeight, fNoiseSeed2D, nOctaveCount, fScalingBias, fPerlinNoise2D); for (int x = 0; x < nOutputWidth; x++) { for (int y = 0; y < nOutputHeight; y++) { short bg_col, fg_col; wchar_t sym; int pixel_bw = (int)(fPerlinNoise2D[y * nOutputWidth + x] * 16.0f); switch (pixel_bw) { case 0: bg_col = BG_DARK_BLUE; fg_col = FG_DARK_BLUE; sym = PIXEL_SOLID; break; case 1: bg_col = BG_DARK_BLUE; fg_col = FG_BLUE; sym = PIXEL_QUARTER; break; case 2: bg_col = BG_DARK_BLUE; fg_col = FG_BLUE; sym = PIXEL_HALF; break; case 3: bg_col = BG_DARK_BLUE; fg_col = FG_BLUE; sym = PIXEL_THREEQUARTERS; break; case 4: bg_col = BG_DARK_BLUE; fg_col = FG_BLUE; sym = PIXEL_SOLID; break; case 5: bg_col = BG_BLUE; fg_col = FG_GREEN; sym = PIXEL_QUARTER; break; case 6: bg_col = BG_BLUE; fg_col = FG_GREEN; sym = PIXEL_HALF; break; case 7: bg_col = BG_BLUE; fg_col = FG_GREEN; sym = PIXEL_THREEQUARTERS; break; case 8: bg_col = BG_BLUE; fg_col = FG_GREEN; sym = PIXEL_SOLID; break; case 9: bg_col = BG_GREEN; fg_col = FG_DARK_GREY; sym = PIXEL_QUARTER; break; case 10: bg_col = BG_GREEN; fg_col = FG_DARK_GREY; sym = PIXEL_HALF; break; case 11: bg_col = BG_GREEN; fg_col = FG_DARK_GREY; sym = PIXEL_THREEQUARTERS; break; case 12: bg_col = BG_GREEN; fg_col = FG_DARK_GREY; sym = PIXEL_SOLID; break; case 13: bg_col = BG_DARK_GREY; fg_col = FG_WHITE; sym = PIXEL_QUARTER; break; case 14: bg_col = BG_DARK_GREY; fg_col = FG_WHITE; sym = PIXEL_HALF; break; case 15: bg_col = BG_DARK_GREY; fg_col = FG_WHITE; sym = PIXEL_THREEQUARTERS; break; case 16: bg_col = BG_DARK_GREY; fg_col = FG_WHITE; sym = PIXEL_SOLID; break; } Draw(x, y, sym, fg_col | bg_col); } } } return true; } void PerlinNoise1D(int nCount, float *fSeed, int nOctaves, float fBias, float *fOutput) { // Used 1D Perlin Noise for (int x = 0; x < nCount; x++) { float fNoise = 0.0f; float fScaleAcc = 0.0f; float fScale = 1.0f; for (int o = 0; o < nOctaves; o++) { int nPitch = nCount >> o; int nSample1 = (x / nPitch) * nPitch; int nSample2 = (nSample1 + nPitch) % nCount; float fBlend = (float)(x - nSample1) / (float)nPitch; float fSample = (1.0f - fBlend) * fSeed[nSample1] + fBlend * fSeed[nSample2]; fScaleAcc += fScale; fNoise += fSample * fScale; fScale = fScale / fBias; } // Scale to seed range fOutput[x] = fNoise / fScaleAcc; } } void PerlinNoise2D(int nWidth, int nHeight, float *fSeed, int nOctaves, float fBias, float *fOutput) { // Used 1D Perlin Noise for (int x = 0; x < nWidth; x++) for (int y = 0; y < nHeight; y++) { float fNoise = 0.0f; float fScaleAcc = 0.0f; float fScale = 1.0f; for (int o = 0; o < nOctaves; o++) { int nPitch = nWidth >> o; int nSampleX1 = (x / nPitch) * nPitch; int nSampleY1 = (y / nPitch) * nPitch; int nSampleX2 = (nSampleX1 + nPitch) % nWidth; int nSampleY2 = (nSampleY1 + nPitch) % nWidth; float fBlendX = (float)(x - nSampleX1) / (float)nPitch; float fBlendY = (float)(y - nSampleY1) / (float)nPitch; float fSampleT = (1.0f - fBlendX) * fSeed[nSampleY1 * nWidth + nSampleX1] + fBlendX * fSeed[nSampleY1 * nWidth + nSampleX2]; float fSampleB = (1.0f - fBlendX) * fSeed[nSampleY2 * nWidth + nSampleX1] + fBlendX * fSeed[nSampleY2 * nWidth + nSampleX2]; fScaleAcc += fScale; fNoise += (fBlendY * (fSampleB - fSampleT) + fSampleT) * fScale; fScale = fScale / fBias; } // Scale to seed range fOutput[y * nWidth + x] = fNoise / fScaleAcc; } } }; int main() { OneLoneCoder_PerlinNoiseDemo game; game.ConstructConsole(256, 256, 3, 3); game.Start(); return 0; }