/* OneLoneCoder.com - 3D Graphics Part #1 - Triangles & Projections "Tredimensjonal Grafikk" - @Javidx9 License ~~~~~~~ One Lone Coder Console Game Engine Copyright (C) 2018 Javidx9 This program comes with ABSOLUTELY NO WARRANTY. This is free software, and you are welcome to redistribute it under certain conditions; See license for details. Original works located at: https://www.github.com/onelonecoder https://www.onelonecoder.com https://www.youtube.com/javidx9 GNU GPLv3 https://github.com/OneLoneCoder/videos/blob/master/LICENSE From Javidx9 :) ~~~~~~~~~~~~~~~ Hello! Ultimately I don't care what you use this for. It's intended to be educational, and perhaps to the oddly minded - a little bit of fun. Please hack this, change it and use it in any way you see fit. You acknowledge that I am not responsible for anything bad that happens as a result of your actions. However this code is protected by GNU GPLv3, see the license in the github repo. This means you must attribute me if you use it. You can view this license here: https://github.com/OneLoneCoder/videos/blob/master/LICENSE Cheers! Background ~~~~~~~~~~ 3D Graphics is an interesting, visually pleasing suite of algorithms. This is the first video in a series that will demonstrate the fundamentals required to build your own software based 3D graphics systems. Video ~~~~~ https://youtu.be/ih20l3pJoeU Author ~~~~~~ Twitter: @javidx9 Blog: http://www.onelonecoder.com Discord: https://discord.gg/WhwHUMV Last Updated: 14/07/2018 */ #include "olcConsoleGameEngine.h" using namespace std; struct vec3d { float x, y, z; }; struct triangle { vec3d p[3]; }; struct mesh { vector tris; }; struct mat4x4 { float m[4][4] = { 0 }; }; class olcEngine3D : public olcConsoleGameEngine { public: olcEngine3D() { m_sAppName = L"3D Demo"; } private: mesh meshCube; mat4x4 matProj; float fTheta; void MultiplyMatrixVector(vec3d &i, vec3d &o, mat4x4 &m) { o.x = i.x * m.m[0][0] + i.y * m.m[1][0] + i.z * m.m[2][0] + m.m[3][0]; o.y = i.x * m.m[0][1] + i.y * m.m[1][1] + i.z * m.m[2][1] + m.m[3][1]; o.z = i.x * m.m[0][2] + i.y * m.m[1][2] + i.z * m.m[2][2] + m.m[3][2]; float w = i.x * m.m[0][3] + i.y * m.m[1][3] + i.z * m.m[2][3] + m.m[3][3]; if (w != 0.0f) { o.x /= w; o.y /= w; o.z /= w; } } public: bool OnUserCreate() override { meshCube.tris = { // SOUTH { 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f }, { 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f }, // EAST { 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f }, { 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f }, // NORTH { 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f }, { 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f }, // WEST { 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f }, { 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f }, // TOP { 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f }, { 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f }, // BOTTOM { 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f }, { 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f }, }; // Projection Matrix float fNear = 0.1f; float fFar = 1000.0f; float fFov = 90.0f; float fAspectRatio = (float)ScreenHeight() / (float)ScreenWidth(); float fFovRad = 1.0f / tanf(fFov * 0.5f / 180.0f * 3.14159f); matProj.m[0][0] = fAspectRatio * fFovRad; matProj.m[1][1] = fFovRad; matProj.m[2][2] = fFar / (fFar - fNear); matProj.m[3][2] = (-fFar * fNear) / (fFar - fNear); matProj.m[2][3] = 1.0f; matProj.m[3][3] = 0.0f; return true; } bool OnUserUpdate(float fElapsedTime) override { // Clear Screen Fill(0, 0, ScreenWidth(), ScreenHeight(), PIXEL_SOLID, FG_BLACK); // Set up rotation matrices mat4x4 matRotZ, matRotX; fTheta += 1.0f * fElapsedTime; // Rotation Z matRotZ.m[0][0] = cosf(fTheta); matRotZ.m[0][1] = sinf(fTheta); matRotZ.m[1][0] = -sinf(fTheta); matRotZ.m[1][1] = cosf(fTheta); matRotZ.m[2][2] = 1; matRotZ.m[3][3] = 1; // Rotation X matRotX.m[0][0] = 1; matRotX.m[1][1] = cosf(fTheta * 0.5f); matRotX.m[1][2] = sinf(fTheta * 0.5f); matRotX.m[2][1] = -sinf(fTheta * 0.5f); matRotX.m[2][2] = cosf(fTheta * 0.5f); matRotX.m[3][3] = 1; // Draw Triangles for (auto tri : meshCube.tris) { triangle triProjected, triTranslated, triRotatedZ, triRotatedZX; // Rotate in Z-Axis MultiplyMatrixVector(tri.p[0], triRotatedZ.p[0], matRotZ); MultiplyMatrixVector(tri.p[1], triRotatedZ.p[1], matRotZ); MultiplyMatrixVector(tri.p[2], triRotatedZ.p[2], matRotZ); // Rotate in X-Axis MultiplyMatrixVector(triRotatedZ.p[0], triRotatedZX.p[0], matRotX); MultiplyMatrixVector(triRotatedZ.p[1], triRotatedZX.p[1], matRotX); MultiplyMatrixVector(triRotatedZ.p[2], triRotatedZX.p[2], matRotX); // Offset into the screen triTranslated = triRotatedZX; triTranslated.p[0].z = triRotatedZX.p[0].z + 3.0f; triTranslated.p[1].z = triRotatedZX.p[1].z + 3.0f; triTranslated.p[2].z = triRotatedZX.p[2].z + 3.0f; // Project triangles from 3D --> 2D MultiplyMatrixVector(triTranslated.p[0], triProjected.p[0], matProj); MultiplyMatrixVector(triTranslated.p[1], triProjected.p[1], matProj); MultiplyMatrixVector(triTranslated.p[2], triProjected.p[2], matProj); // Scale into view triProjected.p[0].x += 1.0f; triProjected.p[0].y += 1.0f; triProjected.p[1].x += 1.0f; triProjected.p[1].y += 1.0f; triProjected.p[2].x += 1.0f; triProjected.p[2].y += 1.0f; triProjected.p[0].x *= 0.5f * (float)ScreenWidth(); triProjected.p[0].y *= 0.5f * (float)ScreenHeight(); triProjected.p[1].x *= 0.5f * (float)ScreenWidth(); triProjected.p[1].y *= 0.5f * (float)ScreenHeight(); triProjected.p[2].x *= 0.5f * (float)ScreenWidth(); triProjected.p[2].y *= 0.5f * (float)ScreenHeight(); // Rasterize triangle DrawTriangle(triProjected.p[0].x, triProjected.p[0].y, triProjected.p[1].x, triProjected.p[1].y, triProjected.p[2].x, triProjected.p[2].y, PIXEL_SOLID, FG_WHITE); } return true; } }; int main() { olcEngine3D demo; if (demo.ConstructConsole(256, 240, 4, 4)) demo.Start(); return 0; }