/* OneLoneCoder.com - 3D Graphics Part #3 - Cameras & Clipping "Tredimensjonal Grafikk" - @Javidx9 License ~~~~~~~ One Lone Coder Console Game Engine Copyright (C) 2018 Javidx9 This program comes with ABSOLUTELY NO WARRANTY. This is free software, and you are welcome to redistribute it under certain conditions; See license for details. Original works located at: https://www.github.com/onelonecoder https://www.onelonecoder.com https://www.youtube.com/javidx9 GNU GPLv3 https://github.com/OneLoneCoder/videos/blob/master/LICENSE From Javidx9 :) ~~~~~~~~~~~~~~~ Hello! Ultimately I don't care what you use this for. It's intended to be educational, and perhaps to the oddly minded - a little bit of fun. Please hack this, change it and use it in any way you see fit. You acknowledge that I am not responsible for anything bad that happens as a result of your actions. However this code is protected by GNU GPLv3, see the license in the github repo. This means you must attribute me if you use it. You can view this license here: https://github.com/OneLoneCoder/videos/blob/master/LICENSE Cheers! Background ~~~~~~~~~~ 3D Graphics is an interesting, visually pleasing suite of algorithms. This is the first video in a series that will demonstrate the fundamentals required to build your own software based 3D graphics systems. Video ~~~~~ https://youtu.be/ih20l3pJoeU https://youtu.be/XgMWc6LumG4 https://youtu.be/HXSuNxpCzdM Author ~~~~~~ Twitter: @javidx9 Blog: http://www.onelonecoder.com Discord: https://discord.gg/WhwHUMV Last Updated: 14/08/2018 */ #include "olcConsoleGameEngine.h" #include #include #include using namespace std; struct vec3d { float x = 0; float y = 0; float z = 0; float w = 1; // Need a 4th term to perform sensible matrix vector multiplication }; struct triangle { vec3d p[3]; wchar_t sym; short col; }; struct mesh { vector tris; bool LoadFromObjectFile(string sFilename) { ifstream f(sFilename); if (!f.is_open()) return false; // Local cache of verts vector verts; while (!f.eof()) { char line[128]; f.getline(line, 128); strstream s; s << line; char junk; if (line[0] == 'v') { vec3d v; s >> junk >> v.x >> v.y >> v.z; verts.push_back(v); } if (line[0] == 'f') { int f[3]; s >> junk >> f[0] >> f[1] >> f[2]; tris.push_back({ verts[f[0] - 1], verts[f[1] - 1], verts[f[2] - 1] }); } } return true; } }; struct mat4x4 { float m[4][4] = { 0 }; }; class olcEngine3D : public olcConsoleGameEngine { public: olcEngine3D() { m_sAppName = L"3D Demo"; } private: mesh meshCube; mat4x4 matProj; // Matrix that converts from view space to screen space vec3d vCamera; // Location of camera in world space vec3d vLookDir; // Direction vector along the direction camera points float fYaw; // FPS Camera rotation in XZ plane float fTheta; // Spins World transform vec3d Matrix_MultiplyVector(mat4x4 &m, vec3d &i) { vec3d v; v.x = i.x * m.m[0][0] + i.y * m.m[1][0] + i.z * m.m[2][0] + i.w * m.m[3][0]; v.y = i.x * m.m[0][1] + i.y * m.m[1][1] + i.z * m.m[2][1] + i.w * m.m[3][1]; v.z = i.x * m.m[0][2] + i.y * m.m[1][2] + i.z * m.m[2][2] + i.w * m.m[3][2]; v.w = i.x * m.m[0][3] + i.y * m.m[1][3] + i.z * m.m[2][3] + i.w * m.m[3][3]; return v; } mat4x4 Matrix_MakeIdentity() { mat4x4 matrix; matrix.m[0][0] = 1.0f; matrix.m[1][1] = 1.0f; matrix.m[2][2] = 1.0f; matrix.m[3][3] = 1.0f; return matrix; } mat4x4 Matrix_MakeRotationX(float fAngleRad) { mat4x4 matrix; matrix.m[0][0] = 1.0f; matrix.m[1][1] = cosf(fAngleRad); matrix.m[1][2] = sinf(fAngleRad); matrix.m[2][1] = -sinf(fAngleRad); matrix.m[2][2] = cosf(fAngleRad); matrix.m[3][3] = 1.0f; return matrix; } mat4x4 Matrix_MakeRotationY(float fAngleRad) { mat4x4 matrix; matrix.m[0][0] = cosf(fAngleRad); matrix.m[0][2] = sinf(fAngleRad); matrix.m[2][0] = -sinf(fAngleRad); matrix.m[1][1] = 1.0f; matrix.m[2][2] = cosf(fAngleRad); matrix.m[3][3] = 1.0f; return matrix; } mat4x4 Matrix_MakeRotationZ(float fAngleRad) { mat4x4 matrix; matrix.m[0][0] = cosf(fAngleRad); matrix.m[0][1] = sinf(fAngleRad); matrix.m[1][0] = -sinf(fAngleRad); matrix.m[1][1] = cosf(fAngleRad); matrix.m[2][2] = 1.0f; matrix.m[3][3] = 1.0f; return matrix; } mat4x4 Matrix_MakeTranslation(float x, float y, float z) { mat4x4 matrix; matrix.m[0][0] = 1.0f; matrix.m[1][1] = 1.0f; matrix.m[2][2] = 1.0f; matrix.m[3][3] = 1.0f; matrix.m[3][0] = x; matrix.m[3][1] = y; matrix.m[3][2] = z; return matrix; } mat4x4 Matrix_MakeProjection(float fFovDegrees, float fAspectRatio, float fNear, float fFar) { float fFovRad = 1.0f / tanf(fFovDegrees * 0.5f / 180.0f * 3.14159f); mat4x4 matrix; matrix.m[0][0] = fAspectRatio * fFovRad; matrix.m[1][1] = fFovRad; matrix.m[2][2] = fFar / (fFar - fNear); matrix.m[3][2] = (-fFar * fNear) / (fFar - fNear); matrix.m[2][3] = 1.0f; matrix.m[3][3] = 0.0f; return matrix; } mat4x4 Matrix_MultiplyMatrix(mat4x4 &m1, mat4x4 &m2) { mat4x4 matrix; for (int c = 0; c < 4; c++) for (int r = 0; r < 4; r++) matrix.m[r][c] = m1.m[r][0] * m2.m[0][c] + m1.m[r][1] * m2.m[1][c] + m1.m[r][2] * m2.m[2][c] + m1.m[r][3] * m2.m[3][c]; return matrix; } mat4x4 Matrix_PointAt(vec3d &pos, vec3d &target, vec3d &up) { // Calculate new forward direction vec3d newForward = Vector_Sub(target, pos); newForward = Vector_Normalise(newForward); // Calculate new Up direction vec3d a = Vector_Mul(newForward, Vector_DotProduct(up, newForward)); vec3d newUp = Vector_Sub(up, a); newUp = Vector_Normalise(newUp); // New Right direction is easy, its just cross product vec3d newRight = Vector_CrossProduct(newUp, newForward); // Construct Dimensioning and Translation Matrix mat4x4 matrix; matrix.m[0][0] = newRight.x; matrix.m[0][1] = newRight.y; matrix.m[0][2] = newRight.z; matrix.m[0][3] = 0.0f; matrix.m[1][0] = newUp.x; matrix.m[1][1] = newUp.y; matrix.m[1][2] = newUp.z; matrix.m[1][3] = 0.0f; matrix.m[2][0] = newForward.x; matrix.m[2][1] = newForward.y; matrix.m[2][2] = newForward.z; matrix.m[2][3] = 0.0f; matrix.m[3][0] = pos.x; matrix.m[3][1] = pos.y; matrix.m[3][2] = pos.z; matrix.m[3][3] = 1.0f; return matrix; } mat4x4 Matrix_QuickInverse(mat4x4 &m) // Only for Rotation/Translation Matrices { mat4x4 matrix; matrix.m[0][0] = m.m[0][0]; matrix.m[0][1] = m.m[1][0]; matrix.m[0][2] = m.m[2][0]; matrix.m[0][3] = 0.0f; matrix.m[1][0] = m.m[0][1]; matrix.m[1][1] = m.m[1][1]; matrix.m[1][2] = m.m[2][1]; matrix.m[1][3] = 0.0f; matrix.m[2][0] = m.m[0][2]; matrix.m[2][1] = m.m[1][2]; matrix.m[2][2] = m.m[2][2]; matrix.m[2][3] = 0.0f; matrix.m[3][0] = -(m.m[3][0] * matrix.m[0][0] + m.m[3][1] * matrix.m[1][0] + m.m[3][2] * matrix.m[2][0]); matrix.m[3][1] = -(m.m[3][0] * matrix.m[0][1] + m.m[3][1] * matrix.m[1][1] + m.m[3][2] * matrix.m[2][1]); matrix.m[3][2] = -(m.m[3][0] * matrix.m[0][2] + m.m[3][1] * matrix.m[1][2] + m.m[3][2] * matrix.m[2][2]); matrix.m[3][3] = 1.0f; return matrix; } vec3d Vector_Add(vec3d &v1, vec3d &v2) { return { v1.x + v2.x, v1.y + v2.y, v1.z + v2.z }; } vec3d Vector_Sub(vec3d &v1, vec3d &v2) { return { v1.x - v2.x, v1.y - v2.y, v1.z - v2.z }; } vec3d Vector_Mul(vec3d &v1, float k) { return { v1.x * k, v1.y * k, v1.z * k }; } vec3d Vector_Div(vec3d &v1, float k) { return { v1.x / k, v1.y / k, v1.z / k }; } float Vector_DotProduct(vec3d &v1, vec3d &v2) { return v1.x*v2.x + v1.y*v2.y + v1.z * v2.z; } float Vector_Length(vec3d &v) { return sqrtf(Vector_DotProduct(v, v)); } vec3d Vector_Normalise(vec3d &v) { float l = Vector_Length(v); return { v.x / l, v.y / l, v.z / l }; } vec3d Vector_CrossProduct(vec3d &v1, vec3d &v2) { vec3d v; v.x = v1.y * v2.z - v1.z * v2.y; v.y = v1.z * v2.x - v1.x * v2.z; v.z = v1.x * v2.y - v1.y * v2.x; return v; } vec3d Vector_IntersectPlane(vec3d &plane_p, vec3d &plane_n, vec3d &lineStart, vec3d &lineEnd) { plane_n = Vector_Normalise(plane_n); float plane_d = -Vector_DotProduct(plane_n, plane_p); float ad = Vector_DotProduct(lineStart, plane_n); float bd = Vector_DotProduct(lineEnd, plane_n); float t = (-plane_d - ad) / (bd - ad); vec3d lineStartToEnd = Vector_Sub(lineEnd, lineStart); vec3d lineToIntersect = Vector_Mul(lineStartToEnd, t); return Vector_Add(lineStart, lineToIntersect); } int Triangle_ClipAgainstPlane(vec3d plane_p, vec3d plane_n, triangle &in_tri, triangle &out_tri1, triangle &out_tri2) { // Make sure plane normal is indeed normal plane_n = Vector_Normalise(plane_n); // Return signed shortest distance from point to plane, plane normal must be normalised auto dist = [&](vec3d &p) { vec3d n = Vector_Normalise(p); return (plane_n.x * p.x + plane_n.y * p.y + plane_n.z * p.z - Vector_DotProduct(plane_n, plane_p)); }; // Create two temporary storage arrays to classify points either side of plane // If distance sign is positive, point lies on "inside" of plane vec3d* inside_points[3]; int nInsidePointCount = 0; vec3d* outside_points[3]; int nOutsidePointCount = 0; // Get signed distance of each point in triangle to plane float d0 = dist(in_tri.p[0]); float d1 = dist(in_tri.p[1]); float d2 = dist(in_tri.p[2]); if (d0 >= 0) { inside_points[nInsidePointCount++] = &in_tri.p[0]; } else { outside_points[nOutsidePointCount++] = &in_tri.p[0]; } if (d1 >= 0) { inside_points[nInsidePointCount++] = &in_tri.p[1]; } else { outside_points[nOutsidePointCount++] = &in_tri.p[1]; } if (d2 >= 0) { inside_points[nInsidePointCount++] = &in_tri.p[2]; } else { outside_points[nOutsidePointCount++] = &in_tri.p[2]; } // Now classify triangle points, and break the input triangle into // smaller output triangles if required. There are four possible // outcomes... if (nInsidePointCount == 0) { // All points lie on the outside of plane, so clip whole triangle // It ceases to exist return 0; // No returned triangles are valid } if (nInsidePointCount == 3) { // All points lie on the inside of plane, so do nothing // and allow the triangle to simply pass through out_tri1 = in_tri; return 1; // Just the one returned original triangle is valid } if (nInsidePointCount == 1 && nOutsidePointCount == 2) { // Triangle should be clipped. As two points lie outside // the plane, the triangle simply becomes a smaller triangle // Copy appearance info to new triangle out_tri1.col = in_tri.col; out_tri1.sym = in_tri.sym; // The inside point is valid, so keep that... out_tri1.p[0] = *inside_points[0]; // but the two new points are at the locations where the // original sides of the triangle (lines) intersect with the plane out_tri1.p[1] = Vector_IntersectPlane(plane_p, plane_n, *inside_points[0], *outside_points[0]); out_tri1.p[2] = Vector_IntersectPlane(plane_p, plane_n, *inside_points[0], *outside_points[1]); return 1; // Return the newly formed single triangle } if (nInsidePointCount == 2 && nOutsidePointCount == 1) { // Triangle should be clipped. As two points lie inside the plane, // the clipped triangle becomes a "quad". Fortunately, we can // represent a quad with two new triangles // Copy appearance info to new triangles out_tri1.col = in_tri.col; out_tri1.sym = in_tri.sym; out_tri2.col = in_tri.col; out_tri2.sym = in_tri.sym; // The first triangle consists of the two inside points and a new // point determined by the location where one side of the triangle // intersects with the plane out_tri1.p[0] = *inside_points[0]; out_tri1.p[1] = *inside_points[1]; out_tri1.p[2] = Vector_IntersectPlane(plane_p, plane_n, *inside_points[0], *outside_points[0]); // The second triangle is composed of one of he inside points, a // new point determined by the intersection of the other side of the // triangle and the plane, and the newly created point above out_tri2.p[0] = *inside_points[1]; out_tri2.p[1] = out_tri1.p[2]; out_tri2.p[2] = Vector_IntersectPlane(plane_p, plane_n, *inside_points[1], *outside_points[0]); return 2; // Return two newly formed triangles which form a quad } } // Taken From Command Line Webcam Video CHAR_INFO GetColour(float lum) { short bg_col, fg_col; wchar_t sym; int pixel_bw = (int)(13.0f*lum); switch (pixel_bw) { case 0: bg_col = BG_BLACK; fg_col = FG_BLACK; sym = PIXEL_SOLID; break; case 1: bg_col = BG_BLACK; fg_col = FG_DARK_GREY; sym = PIXEL_QUARTER; break; case 2: bg_col = BG_BLACK; fg_col = FG_DARK_GREY; sym = PIXEL_HALF; break; case 3: bg_col = BG_BLACK; fg_col = FG_DARK_GREY; sym = PIXEL_THREEQUARTERS; break; case 4: bg_col = BG_BLACK; fg_col = FG_DARK_GREY; sym = PIXEL_SOLID; break; case 5: bg_col = BG_DARK_GREY; fg_col = FG_GREY; sym = PIXEL_QUARTER; break; case 6: bg_col = BG_DARK_GREY; fg_col = FG_GREY; sym = PIXEL_HALF; break; case 7: bg_col = BG_DARK_GREY; fg_col = FG_GREY; sym = PIXEL_THREEQUARTERS; break; case 8: bg_col = BG_DARK_GREY; fg_col = FG_GREY; sym = PIXEL_SOLID; break; case 9: bg_col = BG_GREY; fg_col = FG_WHITE; sym = PIXEL_QUARTER; break; case 10: bg_col = BG_GREY; fg_col = FG_WHITE; sym = PIXEL_HALF; break; case 11: bg_col = BG_GREY; fg_col = FG_WHITE; sym = PIXEL_THREEQUARTERS; break; case 12: bg_col = BG_GREY; fg_col = FG_WHITE; sym = PIXEL_SOLID; break; default: bg_col = BG_BLACK; fg_col = FG_BLACK; sym = PIXEL_SOLID; } CHAR_INFO c; c.Attributes = bg_col | fg_col; c.Char.UnicodeChar = sym; return c; } public: bool OnUserCreate() override { // Load object file meshCube.LoadFromObjectFile("mountains.obj"); // Projection Matrix matProj = Matrix_MakeProjection(90.0f, (float)ScreenHeight() / (float)ScreenWidth(), 0.1f, 1000.0f); return true; } bool OnUserUpdate(float fElapsedTime) override { if (GetKey(VK_UP).bHeld) vCamera.y += 8.0f * fElapsedTime; // Travel Upwards if (GetKey(VK_DOWN).bHeld) vCamera.y -= 8.0f * fElapsedTime; // Travel Downwards // Dont use these two in FPS mode, it is confusing :P if (GetKey(VK_LEFT).bHeld) vCamera.x -= 8.0f * fElapsedTime; // Travel Along X-Axis if (GetKey(VK_RIGHT).bHeld) vCamera.x += 8.0f * fElapsedTime; // Travel Along X-Axis /////// vec3d vForward = Vector_Mul(vLookDir, 8.0f * fElapsedTime); // Standard FPS Control scheme, but turn instead of strafe if (GetKey(L'W').bHeld) vCamera = Vector_Add(vCamera, vForward); if (GetKey(L'S').bHeld) vCamera = Vector_Sub(vCamera, vForward); if (GetKey(L'A').bHeld) fYaw -= 2.0f * fElapsedTime; if (GetKey(L'D').bHeld) fYaw += 2.0f * fElapsedTime; // Set up "World Tranmsform" though not updating theta // makes this a bit redundant mat4x4 matRotZ, matRotX; //fTheta += 1.0f * fElapsedTime; // Uncomment to spin me right round baby right round matRotZ = Matrix_MakeRotationZ(fTheta * 0.5f); matRotX = Matrix_MakeRotationX(fTheta); mat4x4 matTrans; matTrans = Matrix_MakeTranslation(0.0f, 0.0f, 5.0f); mat4x4 matWorld; matWorld = Matrix_MakeIdentity(); // Form World Matrix matWorld = Matrix_MultiplyMatrix(matRotZ, matRotX); // Transform by rotation matWorld = Matrix_MultiplyMatrix(matWorld, matTrans); // Transform by translation // Create "Point At" Matrix for camera vec3d vUp = { 0,1,0 }; vec3d vTarget = { 0,0,1 }; mat4x4 matCameraRot = Matrix_MakeRotationY(fYaw); vLookDir = Matrix_MultiplyVector(matCameraRot, vTarget); vTarget = Vector_Add(vCamera, vLookDir); mat4x4 matCamera = Matrix_PointAt(vCamera, vTarget, vUp); // Make view matrix from camera mat4x4 matView = Matrix_QuickInverse(matCamera); // Store triagles for rastering later vector vecTrianglesToRaster; // Draw Triangles for (auto tri : meshCube.tris) { triangle triProjected, triTransformed, triViewed; // World Matrix Transform triTransformed.p[0] = Matrix_MultiplyVector(matWorld, tri.p[0]); triTransformed.p[1] = Matrix_MultiplyVector(matWorld, tri.p[1]); triTransformed.p[2] = Matrix_MultiplyVector(matWorld, tri.p[2]); // Calculate triangle Normal vec3d normal, line1, line2; // Get lines either side of triangle line1 = Vector_Sub(triTransformed.p[1], triTransformed.p[0]); line2 = Vector_Sub(triTransformed.p[2], triTransformed.p[0]); // Take cross product of lines to get normal to triangle surface normal = Vector_CrossProduct(line1, line2); // You normally need to normalise a normal! normal = Vector_Normalise(normal); // Get Ray from triangle to camera vec3d vCameraRay = Vector_Sub(triTransformed.p[0], vCamera); // If ray is aligned with normal, then triangle is visible if (Vector_DotProduct(normal, vCameraRay) < 0.0f) { // Illumination vec3d light_direction = { 0.0f, 1.0f, -1.0f }; light_direction = Vector_Normalise(light_direction); // How "aligned" are light direction and triangle surface normal? float dp = max(0.1f, Vector_DotProduct(light_direction, normal)); // Choose console colours as required (much easier with RGB) CHAR_INFO c = GetColour(dp); triTransformed.col = c.Attributes; triTransformed.sym = c.Char.UnicodeChar; // Convert World Space --> View Space triViewed.p[0] = Matrix_MultiplyVector(matView, triTransformed.p[0]); triViewed.p[1] = Matrix_MultiplyVector(matView, triTransformed.p[1]); triViewed.p[2] = Matrix_MultiplyVector(matView, triTransformed.p[2]); triViewed.sym = triTransformed.sym; triViewed.col = triTransformed.col; // Clip Viewed Triangle against near plane, this could form two additional // additional triangles. int nClippedTriangles = 0; triangle clipped[2]; nClippedTriangles = Triangle_ClipAgainstPlane({ 0.0f, 0.0f, 0.1f }, { 0.0f, 0.0f, 1.0f }, triViewed, clipped[0], clipped[1]); // We may end up with multiple triangles form the clip, so project as // required for (int n = 0; n < nClippedTriangles; n++) { // Project triangles from 3D --> 2D triProjected.p[0] = Matrix_MultiplyVector(matProj, clipped[n].p[0]); triProjected.p[1] = Matrix_MultiplyVector(matProj, clipped[n].p[1]); triProjected.p[2] = Matrix_MultiplyVector(matProj, clipped[n].p[2]); triProjected.col = clipped[n].col; triProjected.sym = clipped[n].sym; // Scale into view, we moved the normalising into cartesian space // out of the matrix.vector function from the previous videos, so // do this manually triProjected.p[0] = Vector_Div(triProjected.p[0], triProjected.p[0].w); triProjected.p[1] = Vector_Div(triProjected.p[1], triProjected.p[1].w); triProjected.p[2] = Vector_Div(triProjected.p[2], triProjected.p[2].w); // X/Y are inverted so put them back triProjected.p[0].x *= -1.0f; triProjected.p[1].x *= -1.0f; triProjected.p[2].x *= -1.0f; triProjected.p[0].y *= -1.0f; triProjected.p[1].y *= -1.0f; triProjected.p[2].y *= -1.0f; // Offset verts into visible normalised space vec3d vOffsetView = { 1,1,0 }; triProjected.p[0] = Vector_Add(triProjected.p[0], vOffsetView); triProjected.p[1] = Vector_Add(triProjected.p[1], vOffsetView); triProjected.p[2] = Vector_Add(triProjected.p[2], vOffsetView); triProjected.p[0].x *= 0.5f * (float)ScreenWidth(); triProjected.p[0].y *= 0.5f * (float)ScreenHeight(); triProjected.p[1].x *= 0.5f * (float)ScreenWidth(); triProjected.p[1].y *= 0.5f * (float)ScreenHeight(); triProjected.p[2].x *= 0.5f * (float)ScreenWidth(); triProjected.p[2].y *= 0.5f * (float)ScreenHeight(); // Store triangle for sorting vecTrianglesToRaster.push_back(triProjected); } } } // Sort triangles from back to front sort(vecTrianglesToRaster.begin(), vecTrianglesToRaster.end(), [](triangle &t1, triangle &t2) { float z1 = (t1.p[0].z + t1.p[1].z + t1.p[2].z) / 3.0f; float z2 = (t2.p[0].z + t2.p[1].z + t2.p[2].z) / 3.0f; return z1 > z2; }); // Clear Screen Fill(0, 0, ScreenWidth(), ScreenHeight(), PIXEL_SOLID, FG_BLACK); // Loop through all transformed, viewed, projected, and sorted triangles for (auto &triToRaster : vecTrianglesToRaster) { // Clip triangles against all four screen edges, this could yield // a bunch of triangles, so create a queue that we traverse to // ensure we only test new triangles generated against planes triangle clipped[2]; list listTriangles; // Add initial triangle listTriangles.push_back(triToRaster); int nNewTriangles = 1; for (int p = 0; p < 4; p++) { int nTrisToAdd = 0; while (nNewTriangles > 0) { // Take triangle from front of queue triangle test = listTriangles.front(); listTriangles.pop_front(); nNewTriangles--; // Clip it against a plane. We only need to test each // subsequent plane, against subsequent new triangles // as all triangles after a plane clip are guaranteed // to lie on the inside of the plane. I like how this // comment is almost completely and utterly justified switch (p) { case 0: nTrisToAdd = Triangle_ClipAgainstPlane({ 0.0f, 0.0f, 0.0f }, { 0.0f, 1.0f, 0.0f }, test, clipped[0], clipped[1]); break; case 1: nTrisToAdd = Triangle_ClipAgainstPlane({ 0.0f, (float)ScreenHeight() - 1, 0.0f }, { 0.0f, -1.0f, 0.0f }, test, clipped[0], clipped[1]); break; case 2: nTrisToAdd = Triangle_ClipAgainstPlane({ 0.0f, 0.0f, 0.0f }, { 1.0f, 0.0f, 0.0f }, test, clipped[0], clipped[1]); break; case 3: nTrisToAdd = Triangle_ClipAgainstPlane({ (float)ScreenWidth() - 1, 0.0f, 0.0f }, { -1.0f, 0.0f, 0.0f }, test, clipped[0], clipped[1]); break; } // Clipping may yield a variable number of triangles, so // add these new ones to the back of the queue for subsequent // clipping against next planes for (int w = 0; w < nTrisToAdd; w++) listTriangles.push_back(clipped[w]); } nNewTriangles = listTriangles.size(); } // Draw the transformed, viewed, clipped, projected, sorted, clipped triangles for (auto &t : listTriangles) { FillTriangle(t.p[0].x, t.p[0].y, t.p[1].x, t.p[1].y, t.p[2].x, t.p[2].y, t.sym, t.col); //DrawTriangle(t.p[0].x, t.p[0].y, t.p[1].x, t.p[1].y, t.p[2].x, t.p[2].y, PIXEL_SOLID, FG_BLACK); } } return true; } }; int main() { olcEngine3D demo; if (demo.ConstructConsole(256, 240, 4, 4)) demo.Start(); return 0; }