/* OneLoneCoder.com - 3D Graphics Part #2 - Normals, Culling, Lighting & Object Files "Tredimensjonal Grafikk" - @Javidx9 License ~~~~~~~ One Lone Coder Console Game Engine Copyright (C) 2018 Javidx9 This program comes with ABSOLUTELY NO WARRANTY. This is free software, and you are welcome to redistribute it under certain conditions; See license for details. Original works located at: https://www.github.com/onelonecoder https://www.onelonecoder.com https://www.youtube.com/javidx9 GNU GPLv3 https://github.com/OneLoneCoder/videos/blob/master/LICENSE From Javidx9 :) ~~~~~~~~~~~~~~~ Hello! Ultimately I don't care what you use this for. It's intended to be educational, and perhaps to the oddly minded - a little bit of fun. Please hack this, change it and use it in any way you see fit. You acknowledge that I am not responsible for anything bad that happens as a result of your actions. However this code is protected by GNU GPLv3, see the license in the github repo. This means you must attribute me if you use it. You can view this license here: https://github.com/OneLoneCoder/videos/blob/master/LICENSE Cheers! Background ~~~~~~~~~~ 3D Graphics is an interesting, visually pleasing suite of algorithms. This is the first video in a series that will demonstrate the fundamentals required to build your own software based 3D graphics systems. Video ~~~~~ https://youtu.be/ih20l3pJoeU https://youtu.be/XgMWc6LumG4 Author ~~~~~~ Twitter: @javidx9 Blog: http://www.onelonecoder.com Discord: https://discord.gg/WhwHUMV Last Updated: 29/07/2018 */ #include "olcConsoleGameEngine.h" #include #include #include using namespace std; struct vec3d { float x, y, z; }; struct triangle { vec3d p[3]; wchar_t sym; short col; }; struct mesh { vector tris; bool LoadFromObjectFile(string sFilename) { ifstream f(sFilename); if (!f.is_open()) return false; // Local cache of verts vector verts; while (!f.eof()) { char line[128]; f.getline(line, 128); strstream s; s << line; char junk; if (line[0] == 'v') { vec3d v; s >> junk >> v.x >> v.y >> v.z; verts.push_back(v); } if (line[0] == 'f') { int f[3]; s >> junk >> f[0] >> f[1] >> f[2]; tris.push_back({ verts[f[0] - 1], verts[f[1] - 1], verts[f[2] - 1] }); } } return true; } }; struct mat4x4 { float m[4][4] = { 0 }; }; class olcEngine3D : public olcConsoleGameEngine { public: olcEngine3D() { m_sAppName = L"3D Demo"; } private: mesh meshCube; mat4x4 matProj; vec3d vCamera; float fTheta; void MultiplyMatrixVector(vec3d &i, vec3d &o, mat4x4 &m) { o.x = i.x * m.m[0][0] + i.y * m.m[1][0] + i.z * m.m[2][0] + m.m[3][0]; o.y = i.x * m.m[0][1] + i.y * m.m[1][1] + i.z * m.m[2][1] + m.m[3][1]; o.z = i.x * m.m[0][2] + i.y * m.m[1][2] + i.z * m.m[2][2] + m.m[3][2]; float w = i.x * m.m[0][3] + i.y * m.m[1][3] + i.z * m.m[2][3] + m.m[3][3]; if (w != 0.0f) { o.x /= w; o.y /= w; o.z /= w; } } // Taken From Command Line Webcam Video CHAR_INFO GetColour(float lum) { short bg_col, fg_col; wchar_t sym; int pixel_bw = (int)(13.0f*lum); switch (pixel_bw) { case 0: bg_col = BG_BLACK; fg_col = FG_BLACK; sym = PIXEL_SOLID; break; case 1: bg_col = BG_BLACK; fg_col = FG_DARK_GREY; sym = PIXEL_QUARTER; break; case 2: bg_col = BG_BLACK; fg_col = FG_DARK_GREY; sym = PIXEL_HALF; break; case 3: bg_col = BG_BLACK; fg_col = FG_DARK_GREY; sym = PIXEL_THREEQUARTERS; break; case 4: bg_col = BG_BLACK; fg_col = FG_DARK_GREY; sym = PIXEL_SOLID; break; case 5: bg_col = BG_DARK_GREY; fg_col = FG_GREY; sym = PIXEL_QUARTER; break; case 6: bg_col = BG_DARK_GREY; fg_col = FG_GREY; sym = PIXEL_HALF; break; case 7: bg_col = BG_DARK_GREY; fg_col = FG_GREY; sym = PIXEL_THREEQUARTERS; break; case 8: bg_col = BG_DARK_GREY; fg_col = FG_GREY; sym = PIXEL_SOLID; break; case 9: bg_col = BG_GREY; fg_col = FG_WHITE; sym = PIXEL_QUARTER; break; case 10: bg_col = BG_GREY; fg_col = FG_WHITE; sym = PIXEL_HALF; break; case 11: bg_col = BG_GREY; fg_col = FG_WHITE; sym = PIXEL_THREEQUARTERS; break; case 12: bg_col = BG_GREY; fg_col = FG_WHITE; sym = PIXEL_SOLID; break; default: bg_col = BG_BLACK; fg_col = FG_BLACK; sym = PIXEL_SOLID; } CHAR_INFO c; c.Attributes = bg_col | fg_col; c.Char.UnicodeChar = sym; return c; } public: bool OnUserCreate() override { //meshCube.tris = { //// SOUTH //{ 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f }, //{ 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f }, //// EAST //{ 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f }, //{ 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f }, //// NORTH //{ 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f }, //{ 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f }, //// WEST //{ 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f }, //{ 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f }, //// TOP //{ 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f }, //{ 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f }, //// BOTTOM //{ 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f }, //{ 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f }, //}; meshCube.LoadFromObjectFile("VideoShip.obj"); // Projection Matrix float fNear = 0.1f; float fFar = 1000.0f; float fFov = 90.0f; float fAspectRatio = (float)ScreenHeight() / (float)ScreenWidth(); float fFovRad = 1.0f / tanf(fFov * 0.5f / 180.0f * 3.14159f); matProj.m[0][0] = fAspectRatio * fFovRad; matProj.m[1][1] = fFovRad; matProj.m[2][2] = fFar / (fFar - fNear); matProj.m[3][2] = (-fFar * fNear) / (fFar - fNear); matProj.m[2][3] = 1.0f; matProj.m[3][3] = 0.0f; return true; } bool OnUserUpdate(float fElapsedTime) override { // Clear Screen Fill(0, 0, ScreenWidth(), ScreenHeight(), PIXEL_SOLID, FG_BLACK); // Set up rotation matrices mat4x4 matRotZ, matRotX; fTheta += 1.0f * fElapsedTime; // Rotation Z matRotZ.m[0][0] = cosf(fTheta); matRotZ.m[0][1] = sinf(fTheta); matRotZ.m[1][0] = -sinf(fTheta); matRotZ.m[1][1] = cosf(fTheta); matRotZ.m[2][2] = 1; matRotZ.m[3][3] = 1; // Rotation X matRotX.m[0][0] = 1; matRotX.m[1][1] = cosf(fTheta * 0.5f); matRotX.m[1][2] = sinf(fTheta * 0.5f); matRotX.m[2][1] = -sinf(fTheta * 0.5f); matRotX.m[2][2] = cosf(fTheta * 0.5f); matRotX.m[3][3] = 1; // Store triagles for rastering later vector vecTrianglesToRaster; // Draw Triangles for (auto tri : meshCube.tris) { triangle triProjected, triTranslated, triRotatedZ, triRotatedZX; // Rotate in Z-Axis MultiplyMatrixVector(tri.p[0], triRotatedZ.p[0], matRotZ); MultiplyMatrixVector(tri.p[1], triRotatedZ.p[1], matRotZ); MultiplyMatrixVector(tri.p[2], triRotatedZ.p[2], matRotZ); // Rotate in X-Axis MultiplyMatrixVector(triRotatedZ.p[0], triRotatedZX.p[0], matRotX); MultiplyMatrixVector(triRotatedZ.p[1], triRotatedZX.p[1], matRotX); MultiplyMatrixVector(triRotatedZ.p[2], triRotatedZX.p[2], matRotX); // Offset into the screen triTranslated = triRotatedZX; triTranslated.p[0].z = triRotatedZX.p[0].z + 8.0f; triTranslated.p[1].z = triRotatedZX.p[1].z + 8.0f; triTranslated.p[2].z = triRotatedZX.p[2].z + 8.0f; // Use Cross-Product to get surface normal vec3d normal, line1, line2; line1.x = triTranslated.p[1].x - triTranslated.p[0].x; line1.y = triTranslated.p[1].y - triTranslated.p[0].y; line1.z = triTranslated.p[1].z - triTranslated.p[0].z; line2.x = triTranslated.p[2].x - triTranslated.p[0].x; line2.y = triTranslated.p[2].y - triTranslated.p[0].y; line2.z = triTranslated.p[2].z - triTranslated.p[0].z; normal.x = line1.y * line2.z - line1.z * line2.y; normal.y = line1.z * line2.x - line1.x * line2.z; normal.z = line1.x * line2.y - line1.y * line2.x; // It's normally normal to normalise the normal float l = sqrtf(normal.x*normal.x + normal.y*normal.y + normal.z*normal.z); normal.x /= l; normal.y /= l; normal.z /= l; //if (normal.z < 0) if(normal.x * (triTranslated.p[0].x - vCamera.x) + normal.y * (triTranslated.p[0].y - vCamera.y) + normal.z * (triTranslated.p[0].z - vCamera.z) < 0.0f) { // Illumination vec3d light_direction = { 0.0f, 0.0f, -1.0f }; float l = sqrtf(light_direction.x*light_direction.x + light_direction.y*light_direction.y + light_direction.z*light_direction.z); light_direction.x /= l; light_direction.y /= l; light_direction.z /= l; // How similar is normal to light direction float dp = normal.x * light_direction.x + normal.y * light_direction.y + normal.z * light_direction.z; // Choose console colours as required (much easier with RGB) CHAR_INFO c = GetColour(dp); triTranslated.col = c.Attributes; triTranslated.sym = c.Char.UnicodeChar; // Project triangles from 3D --> 2D MultiplyMatrixVector(triTranslated.p[0], triProjected.p[0], matProj); MultiplyMatrixVector(triTranslated.p[1], triProjected.p[1], matProj); MultiplyMatrixVector(triTranslated.p[2], triProjected.p[2], matProj); triProjected.col = triTranslated.col; triProjected.sym = triTranslated.sym; // Scale into view triProjected.p[0].x += 1.0f; triProjected.p[0].y += 1.0f; triProjected.p[1].x += 1.0f; triProjected.p[1].y += 1.0f; triProjected.p[2].x += 1.0f; triProjected.p[2].y += 1.0f; triProjected.p[0].x *= 0.5f * (float)ScreenWidth(); triProjected.p[0].y *= 0.5f * (float)ScreenHeight(); triProjected.p[1].x *= 0.5f * (float)ScreenWidth(); triProjected.p[1].y *= 0.5f * (float)ScreenHeight(); triProjected.p[2].x *= 0.5f * (float)ScreenWidth(); triProjected.p[2].y *= 0.5f * (float)ScreenHeight(); // Store triangle for sorting vecTrianglesToRaster.push_back(triProjected); } } // Sort triangles from back to front sort(vecTrianglesToRaster.begin(), vecTrianglesToRaster.end(), [](triangle &t1, triangle &t2) { float z1 = (t1.p[0].z + t1.p[1].z + t1.p[2].z) / 3.0f; float z2 = (t2.p[0].z + t2.p[1].z + t2.p[2].z) / 3.0f; return z1 > z2; }); for (auto &triProjected : vecTrianglesToRaster) { // Rasterize triangle FillTriangle(triProjected.p[0].x, triProjected.p[0].y, triProjected.p[1].x, triProjected.p[1].y, triProjected.p[2].x, triProjected.p[2].y, triProjected.sym, triProjected.col); /*DrawTriangle(triProjected.p[0].x, triProjected.p[0].y, triProjected.p[1].x, triProjected.p[1].y, triProjected.p[2].x, triProjected.p[2].y, PIXEL_SOLID, FG_BLACK);*/ } return true; } }; int main() { olcEngine3D demo; if (demo.ConstructConsole(256, 240, 4, 4)) demo.Start(); return 0; }