Also a little update the olcConsoleGameEngine to draw transparent ASCII stringsmaster
parent
482e0e15f8
commit
d849172e2d
@ -0,0 +1,305 @@ |
||||
/*
|
||||
OneLoneCoder.com - Code-It-Yourself! Racing Game at the command prompt (quick and simple c++) |
||||
"Let's go, go, go!!!" - @Javidx9 |
||||
|
||||
Disclaimer |
||||
~~~~~~~~~~ |
||||
I don't care what you use this for. It's intended to be educational, and perhaps |
||||
to the oddly minded - a little bit of fun. Please hack this, change it and use it |
||||
in any way you see fit. BUT, you acknowledge that I am not responsible for anything |
||||
bad that happens as a result of your actions. However, if good stuff happens, I |
||||
would appreciate a shout out, or at least give the blog some publicity for me. |
||||
Cheers! |
||||
|
||||
Background |
||||
~~~~~~~~~~ |
||||
I'm a sim-racer when I'm not coding. Racing games are far more sophisticated than |
||||
they used to be. Frankly, retro racing games are a bit naff. But when done in the |
||||
command prompt they have a new level of craziness. |
||||
|
||||
Controls |
||||
~~~~~~~~ |
||||
Left Arrow/Right Arrow Steer, Up Arrow accelerates. There are no brakes! |
||||
Set the fastest lap times you can! |
||||
|
||||
Author |
||||
~~~~~~ |
||||
Twitter: @javidx9 |
||||
Blog: www.onelonecoder.com |
||||
|
||||
Video: |
||||
~~~~~~ |
||||
https://youtu.be/KkMZI5Jbf18
|
||||
|
||||
Last Updated: 10/07/2017 |
||||
*/ |
||||
|
||||
#include <iostream> |
||||
#include <string> |
||||
using namespace std; |
||||
|
||||
#include "olcConsoleGameEngine.h" |
||||
|
||||
|
||||
class OneLoneCoder_FormulaOLC : public olcConsoleGameEngine |
||||
{ |
||||
public: |
||||
OneLoneCoder_FormulaOLC() |
||||
{ |
||||
m_sAppName = L"Formula OLC"; |
||||
} |
||||
|
||||
private: |
||||
|
||||
float fDistance = 0.0f; // Distance car has travelled around track
|
||||
float fCurvature = 0.0f; // Current track curvature, lerped between track sections
|
||||
float fTrackCurvature = 0.0f; // Accumulation of track curvature
|
||||
float fTrackDistance = 0.0f; // Total distance of track
|
||||
|
||||
float fCarPos = 0.0f; // Current car position
|
||||
float fPlayerCurvature = 0.0f; // Accumulation of player curvature
|
||||
float fSpeed = 0.0f; // Current player speed
|
||||
|
||||
vector<pair<float, float>> vecTrack; // Track sections, sharpness of bend, length of section
|
||||
|
||||
list<float> listLapTimes; // List of previous lap times
|
||||
float fCurrentLapTime; // Current lap time
|
||||
|
||||
protected: |
||||
// Called by olcConsoleGameEngine
|
||||
virtual bool OnUserCreate() |
||||
{ |
||||
// Define track
|
||||
vecTrack.push_back(make_pair(0.0f, 10.0f)); // Short section for start/finish line
|
||||
vecTrack.push_back(make_pair(0.0f, 200.0f)); |
||||
vecTrack.push_back(make_pair(1.0f, 200.0f)); |
||||
vecTrack.push_back(make_pair(0.0f, 400.0f)); |
||||
vecTrack.push_back(make_pair(-1.0f, 100.0f)); |
||||
vecTrack.push_back(make_pair(0.0f, 200.0f)); |
||||
vecTrack.push_back(make_pair(-1.0f, 200.0f)); |
||||
vecTrack.push_back(make_pair(1.0f, 200.0f)); |
||||
vecTrack.push_back(make_pair(0.0f, 200.0f)); |
||||
vecTrack.push_back(make_pair(0.2f, 500.0f)); |
||||
vecTrack.push_back(make_pair(0.0f, 200.0f)); |
||||
|
||||
// Calculate total track distance, so we can set lap times
|
||||
for (auto t : vecTrack) |
||||
fTrackDistance += t.second; |
||||
|
||||
listLapTimes = { 0,0,0,0,0 }; |
||||
fCurrentLapTime = 0.0f; |
||||
|
||||
return true; |
||||
} |
||||
|
||||
|
||||
|
||||
|
||||
// Called by olcConsoleGameEngine
|
||||
virtual bool OnUserUpdate(float fElapsedTime) |
||||
{ |
||||
// Handle control input
|
||||
int nCarDirection = 0; |
||||
|
||||
if (m_keys[VK_UP].bHeld) |
||||
fSpeed += 2.0f * fElapsedTime; |
||||
else |
||||
fSpeed -= 1.0f * fElapsedTime; |
||||
|
||||
// Car Curvature is accumulated left/right input, but inversely proportional to speed
|
||||
// i.e. it is harder to turn at high speed
|
||||
if (m_keys[VK_LEFT].bHeld) |
||||
{ |
||||
fPlayerCurvature -= 0.7f * fElapsedTime * (1.0f - fSpeed / 2.0f); |
||||
nCarDirection = -1; |
||||
} |
||||
|
||||
if (m_keys[VK_RIGHT].bHeld) |
||||
{ |
||||
fPlayerCurvature += 0.7f * fElapsedTime * (1.0f - fSpeed / 2.0f); |
||||
nCarDirection = +1; |
||||
} |
||||
|
||||
// If car curvature is too different to track curvature, slow down
|
||||
// as car has gone off track
|
||||
if (fabs(fPlayerCurvature - fTrackCurvature) >= 0.8f) |
||||
fSpeed -= 5.0f * fElapsedTime; |
||||
|
||||
// Clamp Speed
|
||||
if (fSpeed < 0.0f) fSpeed = 0.0f; |
||||
if (fSpeed > 1.0f) fSpeed = 1.0f; |
||||
|
||||
// Move car along track according to car speed
|
||||
fDistance += (70.0f * fSpeed) * fElapsedTime; |
||||
|
||||
// Get Point on track
|
||||
float fOffset = 0; |
||||
int nTrackSection = 0; |
||||
|
||||
// Lap Timing and counting
|
||||
fCurrentLapTime += fElapsedTime; |
||||
if (fDistance >= fTrackDistance) |
||||
{ |
||||
fDistance -= fTrackDistance; |
||||
listLapTimes.push_front(fCurrentLapTime); |
||||
listLapTimes.pop_back(); |
||||
fCurrentLapTime = 0.0f; |
||||
} |
||||
|
||||
// Find position on track (could optimise)
|
||||
while (nTrackSection < vecTrack.size() && fOffset <= fDistance) |
||||
{
|
||||
fOffset += vecTrack[nTrackSection].second; |
||||
nTrackSection++; |
||||
} |
||||
|
||||
// Interpolate towards target track curvature
|
||||
float fTargetCurvature = vecTrack[nTrackSection - 1].first; |
||||
float fTrackCurveDiff = (fTargetCurvature - fCurvature) * fElapsedTime * fSpeed; |
||||
|
||||
// Accumulate player curvature
|
||||
fCurvature += fTrackCurveDiff; |
||||
|
||||
// Accumulate track curvature
|
||||
fTrackCurvature += (fCurvature) * fElapsedTime * fSpeed; |
||||
|
||||
// Draw Sky - light blue and dark blue
|
||||
for (int y = 0; y < ScreenHeight() / 2; y++) |
||||
for (int x = 0; x < ScreenWidth(); x++) |
||||
Draw(x, y, y< ScreenHeight() / 4 ? PIXEL_HALF : PIXEL_SOLID, FG_DARK_BLUE); |
||||
|
||||
// Draw Scenery - our hills are a rectified sine wave, where the phase is adjusted by the
|
||||
// accumulated track curvature
|
||||
for (int x = 0; x < ScreenWidth(); x++) |
||||
{ |
||||
int nHillHeight = (int)(fabs(sinf(x * 0.01f + fTrackCurvature) * 16.0f)); |
||||
for (int y = (ScreenHeight() / 2) - nHillHeight; y < ScreenHeight() / 2; y++) |
||||
Draw(x, y, PIXEL_SOLID, FG_DARK_YELLOW); |
||||
} |
||||
|
||||
|
||||
// Draw Track - Each row is split into grass, clip-board and track
|
||||
for (int y = 0; y < ScreenHeight() / 2; y++) |
||||
for (int x = 0; x < ScreenWidth(); x++) |
||||
{ |
||||
// Perspective is used to modify the width of the track row segments
|
||||
float fPerspective = (float)y / (ScreenHeight()/2.0f); |
||||
float fRoadWidth = 0.1f + fPerspective * 0.8f; // Min 10% Max 90%
|
||||
float fClipWidth = fRoadWidth * 0.15f; |
||||
fRoadWidth *= 0.5f; // Halve it as track is symmetrical around center of track, but offset...
|
||||
|
||||
// ...depending on where the middle point is, which is defined by the current
|
||||
// track curvature.
|
||||
float fMiddlePoint = 0.5f + fCurvature * powf((1.0f - fPerspective), 3); |
||||
|
||||
// Work out segment boundaries
|
||||
int nLeftGrass = (fMiddlePoint - fRoadWidth - fClipWidth) * ScreenWidth(); |
||||
int nLeftClip = (fMiddlePoint - fRoadWidth) * ScreenWidth(); |
||||
int nRightClip = (fMiddlePoint + fRoadWidth) * ScreenWidth(); |
||||
int nRightGrass = (fMiddlePoint + fRoadWidth + fClipWidth) * ScreenWidth(); |
||||
|
||||
int nRow = ScreenHeight() / 2 + y; |
||||
|
||||
// Using periodic oscillatory functions to give lines, where the phase is controlled
|
||||
// by the distance around the track. These take some fine tuning to give the right "feel"
|
||||
int nGrassColour = sinf(20.0f * powf(1.0f - fPerspective,3) + fDistance * 0.1f) > 0.0f ? FG_GREEN : FG_DARK_GREEN; |
||||
int nClipColour = sinf(80.0f * powf(1.0f - fPerspective, 2) + fDistance) > 0.0f ? FG_RED : FG_WHITE; |
||||
|
||||
// Start finish straight changes the road colour to inform the player lap is reset
|
||||
int nRoadColour = (nTrackSection-1) == 0 ? FG_WHITE : FG_GREY; |
||||
|
||||
// Draw the row segments
|
||||
if (x >= 0 && x < nLeftGrass) |
||||
Draw(x, nRow, PIXEL_SOLID, nGrassColour); |
||||
if (x >= nLeftGrass && x < nLeftClip) |
||||
Draw(x, nRow, PIXEL_SOLID, nClipColour); |
||||
if (x >= nLeftClip && x < nRightClip) |
||||
Draw(x, nRow, PIXEL_SOLID, nRoadColour); |
||||
if (x >= nRightClip && x < nRightGrass) |
||||
Draw(x, nRow, PIXEL_SOLID, nClipColour); |
||||
if (x >= nRightGrass && x < ScreenWidth()) |
||||
Draw(x, nRow, PIXEL_SOLID, nGrassColour); |
||||
|
||||
} |
||||
|
||||
// Draw Car - car position on road is proportional to difference between
|
||||
// current accumulated track curvature, and current accumulated player curvature
|
||||
// i.e. if they are similar, the car will be in the middle of the track
|
||||
fCarPos = fPlayerCurvature - fTrackCurvature; |
||||
int nCarPos = ScreenWidth() / 2 + ((int)(ScreenWidth() * fCarPos) / 2.0) - 7; // Offset for sprite
|
||||
|
||||
// Draw a car that represents what the player is doing. Apologies for the quality
|
||||
// of the sprite... :-(
|
||||
switch (nCarDirection) |
||||
{ |
||||
case 0: |
||||
DrawStringAlpha(nCarPos, 80, L" ||####|| "); |
||||
DrawStringAlpha(nCarPos, 81, L" ## "); |
||||
DrawStringAlpha(nCarPos, 82, L" #### "); |
||||
DrawStringAlpha(nCarPos, 83, L" #### "); |
||||
DrawStringAlpha(nCarPos, 84, L"||| #### |||"); |
||||
DrawStringAlpha(nCarPos, 85, L"|||########|||"); |
||||
DrawStringAlpha(nCarPos, 86, L"||| #### |||"); |
||||
break; |
||||
|
||||
case +1: |
||||
DrawStringAlpha(nCarPos, 80, L" //####//"); |
||||
DrawStringAlpha(nCarPos, 81, L" ## "); |
||||
DrawStringAlpha(nCarPos, 82, L" #### "); |
||||
DrawStringAlpha(nCarPos, 83, L" #### "); |
||||
DrawStringAlpha(nCarPos, 84, L"/// ####//// "); |
||||
DrawStringAlpha(nCarPos, 85, L"//#######///O "); |
||||
DrawStringAlpha(nCarPos, 86, L"/// #### //// "); |
||||
break; |
||||
|
||||
case -1: |
||||
DrawStringAlpha(nCarPos, 80, L"\\\\####\\\\ "); |
||||
DrawStringAlpha(nCarPos, 81, L" ## "); |
||||
DrawStringAlpha(nCarPos, 82, L" #### "); |
||||
DrawStringAlpha(nCarPos, 83, L" #### "); |
||||
DrawStringAlpha(nCarPos, 84, L" \\\\\\\\#### \\\\\\"); |
||||
DrawStringAlpha(nCarPos, 85, L" O\\\\\\#######\\\\"); |
||||
DrawStringAlpha(nCarPos, 86, L" \\\\\\\\ #### \\\\\\"); |
||||
break; |
||||
} |
||||
|
||||
// Draw Stats
|
||||
DrawString(0, 0, L"Distance: " + to_wstring(fDistance)); |
||||
DrawString(0, 1, L"Target Curvature: " + to_wstring(fCurvature)); |
||||
DrawString(0, 2, L"Player Curvature: " + to_wstring(fPlayerCurvature)); |
||||
DrawString(0, 3, L"Player Speed : " + to_wstring(fSpeed)); |
||||
DrawString(0, 4, L"Track Curvature : " + to_wstring(fTrackCurvature)); |
||||
|
||||
auto disp_time = [](float t) // Little lambda to turn floating point seconds into minutes:seconds:millis string
|
||||
{ |
||||
int nMinutes = t / 60.0f; |
||||
int nSeconds = t - (nMinutes * 60.0f); |
||||
int nMilliSeconds = (t - (float)nSeconds) * 1000.0f; |
||||
return to_wstring(nMinutes) + L"." + to_wstring(nSeconds) + L":" + to_wstring(nMilliSeconds); |
||||
}; |
||||
|
||||
// Display current laptime
|
||||
DrawString(10, 8, disp_time(fCurrentLapTime)); |
||||
|
||||
// Display last 5 lap times
|
||||
int j = 10; |
||||
for (auto l : listLapTimes) |
||||
{ |
||||
DrawString(10, j, disp_time(l)); |
||||
j++; |
||||
} |
||||
|
||||
return true; |
||||
} |
||||
}; |
||||
|
||||
|
||||
int main() |
||||
{ |
||||
// Use olcConsoleGameEngine derived app
|
||||
OneLoneCoder_FormulaOLC game; |
||||
game.ConstructConsole(160, 100, 8, 8); |
||||
game.Start(); |
||||
|
||||
return 0; |
||||
} |
Loading…
Reference in new issue