The official distribution of olcConsoleGameEngine, a tool used in javidx9's YouTube videos and projects
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
videos/OneLoneCoder_Balls2.cpp

472 lines
15 KiB

/*
OneLoneCoder.com - Programming Balls! #2 Circle Vs Edge Collisions
"...totally overkill for pong..." - @Javidx9
License
~~~~~~~
One Lone Coder Console Game Engine Copyright (C) 2018 Javidx9
This program comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to redistribute it
under certain conditions; See license for details.
Original works located at:
https://www.github.com/onelonecoder
https://www.onelonecoder.com
https://www.youtube.com/javidx9
GNU GPLv3
https://github.com/OneLoneCoder/videos/blob/master/LICENSE
From Javidx9 :)
~~~~~~~~~~~~~~~
Hello! Ultimately I don't care what you use this for. It's intended to be
educational, and perhaps to the oddly minded - a little bit of fun.
Please hack this, change it and use it in any way you see fit. You acknowledge
that I am not responsible for anything bad that happens as a result of
your actions. However this code is protected by GNU GPLv3, see the license in the
github repo. This means you must attribute me if you use it. You can view this
license here: https://github.com/OneLoneCoder/videos/blob/master/LICENSE
Cheers!
Background
~~~~~~~~~~
Collision detection engines can get quite complicated. This program shows the interactions
between circular objects of different sizes and masses. Use Left mouse button to select
and drag a ball to examin static collisions, and use Right mouse button to apply velocity
to the balls as if using a pool/snooker/billiards cue.
Author
~~~~~~
Twitter: @javidx9
Blog: www.onelonecoder.com
Twitch: https://www.twitch.tv/javidx9
Discord: https://discord.gg/WhwHUMV
Video:
~~~~~~
Part #1 https://youtu.be/LPzyNOHY3A4
Part #2 https://youtu.be/ebq7L2Wtbl4
Last Updated: 18/02/2017
*/
#include <iostream>
#include <string>
using namespace std;
#include "olcConsoleGameEngine.h"
struct sBall
{
float px, py;
float vx, vy;
float ax, ay;
float ox, oy;
float radius;
float mass;
float friction;
int score;
int id;
float fSimTimeRemaining;
};
struct sLineSegment
{
float sx, sy;
float ex, ey;
float radius;
};
class CirclePhysics : public olcConsoleGameEngine
{
public:
CirclePhysics()
{
m_sAppName = L"Circles V Edges";
}
private:
vector<sBall> vecBalls;
vector<sLineSegment> vecLines;
vector<pair<float, float>> modelCircle;
sBall* pSelectedBall = nullptr;
olcSprite *spriteBalls = nullptr;
sLineSegment* pSelectedLine = nullptr;
bool bSelectedLineStart = false;
void AddBall(float x, float y, float r = 5.0f, int s = 0)
{
sBall b;
b.px = x; b.py = y;
b.vx = 0; b.vy = 0;
b.ax = 0; b.ay = 0;
b.ox = 0; b.oy = 0;
b.radius = r;
b.mass = r * 10.0f;
b.friction = 0.0f;
b.score = s;
b.fSimTimeRemaining = 0.0f;
b.id = vecBalls.size();
vecBalls.emplace_back(b);
}
public:
bool OnUserCreate()
{
float fBallRadius = 4.0f;
for (int i = 0; i <100; i++)
AddBall(((float)rand()/(float)RAND_MAX) * ScreenWidth(), ((float)rand() / (float)RAND_MAX) * ScreenHeight(), fBallRadius);
AddBall(28.0f, 33.0, fBallRadius * 3);
AddBall(28.0f, 35.0, fBallRadius * 2);
float fLineRadius = 4.0f;
vecLines.push_back({ 12.0f, 4.0f, 64.0f, 4.0f, fLineRadius });
vecLines.push_back({ 76.0f, 4.0f, 132.0f, 4.0f, fLineRadius });
vecLines.push_back({ 12.0f, 68.0f, 64.0f, 68.0f, fLineRadius });
vecLines.push_back({ 76.0f, 68.0f, 132.0f, 68.0f, fLineRadius });
vecLines.push_back({ 4.0f, 12.0f, 4.0f, 60.0f, fLineRadius });
vecLines.push_back({ 140.0f, 12.0f, 140.0f, 60.0f, fLineRadius });
return true;
}
bool OnUserUpdate(float fElapsedTime)
{
auto DoCirclesOverlap = [](float x1, float y1, float r1, float x2, float y2, float r2)
{
return fabs((x1 - x2)*(x1 - x2) + (y1 - y2)*(y1 - y2)) <= ((r1 + r2) * (r1 + r2));
};
auto IsPointInCircle = [](float x1, float y1, float r1, float px, float py)
{
return fabs((x1 - px)*(x1 - px) + (y1 - py)*(y1 - py)) < (r1 * r1);
};
if (m_mouse[0].bPressed)
{
// Check for selected ball
pSelectedBall = nullptr;
for (auto &ball : vecBalls)
{
if (IsPointInCircle(ball.px, ball.py, ball.radius, m_mousePosX, m_mousePosY))
{
pSelectedBall = &ball;
break;
}
}
// Check for selected line segment end
pSelectedLine = nullptr;
for (auto &line : vecLines)
{
if (IsPointInCircle(line.sx, line.sy, line.radius, m_mousePosX, m_mousePosY))
{
pSelectedLine = &line;
bSelectedLineStart = true;
break;
}
if (IsPointInCircle(line.ex, line.ey, line.radius, m_mousePosX, m_mousePosY))
{
pSelectedLine = &line;
bSelectedLineStart = false;
break;
}
}
}
if (m_mouse[0].bHeld)
{
if (pSelectedLine != nullptr)
{
if (bSelectedLineStart)
{
pSelectedLine->sx = GetMouseX();
pSelectedLine->sy = GetMouseY();
}
else
{
pSelectedLine->ex = GetMouseX();
pSelectedLine->ey = GetMouseY();
}
}
}
if (m_mouse[0].bReleased)
{
if (pSelectedBall != nullptr)
{
// Apply velocity
pSelectedBall->vx = 5.0f * ((pSelectedBall->px) - m_mousePosX);
pSelectedBall->vy = 5.0f * ((pSelectedBall->py) - m_mousePosY);
}
pSelectedBall = nullptr;
pSelectedLine = nullptr;
}
if (m_mouse[1].bHeld)
{
for (auto &ball : vecBalls)
{
ball.vx += (m_mousePosX - ball.px) * 0.01f;
ball.vy += (m_mousePosY - ball.py) * 0.01f;
}
}
vector<pair<sBall*, sBall*>> vecCollidingPairs;
vector<sBall*> vecFakeBalls;
// Threshold indicating stability of object
float fStable = 0.05f;
// Multiple simulation updates with small time steps permit more accurate physics
// and realistic results at the expense of CPU time of course
int nSimulationUpdates = 4;
// Multiple collision trees require more steps to resolve. Normally we would
// continue simulation until the object has no simulation time left for this
// epoch, however this is risky as the system may never find stability, so we
// can clamp it here
int nMaxSimulationSteps = 15;
// Break up the frame elapsed time into smaller deltas for each simulation update
float fSimElapsedTime = fElapsedTime / (float)nSimulationUpdates;
// Main simulation loop
for (int i = 0; i < nSimulationUpdates; i++)
{
// Set all balls time to maximum for this epoch
for (auto &ball : vecBalls)
ball.fSimTimeRemaining = fSimElapsedTime;
// Erode simulation time on a per objec tbasis, depending upon what happens
// to it during its journey through this epoch
for (int j = 0; j < nMaxSimulationSteps; j++)
{
// Update Ball Positions
for (auto &ball : vecBalls)
{
if (ball.fSimTimeRemaining > 0.0f)
{
ball.ox = ball.px; // Store original position this epoch
ball.oy = ball.py;
ball.ax = -ball.vx * 0.8f; // Apply drag and gravity
ball.ay = -ball.vy * 0.8f + 100.0f;
ball.vx += ball.ax * ball.fSimTimeRemaining; // Update Velocity
ball.vy += ball.ay * ball.fSimTimeRemaining;
ball.px += ball.vx * ball.fSimTimeRemaining; // Update position
ball.py += ball.vy * ball.fSimTimeRemaining;
// Crudely wrap balls to screen - note this cause issues when collisions occur on screen boundaries
if (ball.px < 0) ball.px += (float)ScreenWidth();
if (ball.px >= ScreenWidth()) ball.px -= (float)ScreenWidth();
if (ball.py < 0) ball.py += (float)ScreenHeight();
if (ball.py >= ScreenHeight()) ball.py -= (float)ScreenHeight();
// Stop ball when velocity is neglible
if (fabs(ball.vx*ball.vx + ball.vy*ball.vy) < fStable)
{
ball.vx = 0;
ball.vy = 0;
}
}
}
// Work out static collisions with walls and displace balls so no overlaps
for (auto &ball : vecBalls)
{
float fDeltaTime = ball.fSimTimeRemaining;
// Against Edges
for (auto &edge : vecLines)
{
// Check that line formed by velocity vector, intersects with line segment
float fLineX1 = edge.ex - edge.sx;
float fLineY1 = edge.ey - edge.sy;
float fLineX2 = ball.px - edge.sx;
float fLineY2 = ball.py - edge.sy;
float fEdgeLength = fLineX1 * fLineX1 + fLineY1 * fLineY1;
// This is nifty - It uses the DP of the line segment vs the line to the object, to work out
// how much of the segment is in the "shadow" of the object vector. The min and max clamp
// this to lie between 0 and the line segment length, which is then normalised. We can
// use this to calculate the closest point on the line segment
float t = max(0, min(fEdgeLength, (fLineX1 * fLineX2 + fLineY1 * fLineY2))) / fEdgeLength;
// Which we do here
float fClosestPointX = edge.sx + t * fLineX1;
float fClosestPointY = edge.sy + t * fLineY1;
// And once we know the closest point, we can check if the ball has collided with the segment in the
// same way we check if two balls have collided
float fDistance = sqrtf((ball.px - fClosestPointX)*(ball.px - fClosestPointX) + (ball.py - fClosestPointY)*(ball.py - fClosestPointY));
if (fDistance <= (ball.radius + edge.radius))
{
// Collision has occurred - treat collision point as a ball that cannot move. To make this
// compatible with the dynamic resolution code below, we add a fake ball with an infinite mass
// so it behaves like a solid object when the momentum calculations are performed
sBall *fakeball = new sBall();
fakeball->radius = edge.radius;
fakeball->mass = ball.mass * 0.8f;
fakeball->px = fClosestPointX;
fakeball->py = fClosestPointY;
fakeball->vx = -ball.vx; // We will use these later to allow the lines to impart energy into ball
fakeball->vy = -ball.vy; // if the lines are moving, i.e. like pinball flippers
// Store Fake Ball
vecFakeBalls.push_back(fakeball);
// Add collision to vector of collisions for dynamic resolution
vecCollidingPairs.push_back({ &ball, fakeball });
// Calculate displacement required
float fOverlap = 1.0f * (fDistance - ball.radius - fakeball->radius);
// Displace Current Ball away from collision
ball.px -= fOverlap * (ball.px - fakeball->px) / fDistance;
ball.py -= fOverlap * (ball.py - fakeball->py) / fDistance;
}
}
// Against other balls
for (auto &target : vecBalls)
{
if (ball.id != target.id) // Do not check against self
{
if (DoCirclesOverlap(ball.px, ball.py, ball.radius, target.px, target.py, target.radius))
{
// Collision has occured
vecCollidingPairs.push_back({ &ball, &target });
// Distance between ball centers
float fDistance = sqrtf((ball.px - target.px)*(ball.px - target.px) + (ball.py - target.py)*(ball.py - target.py));
// Calculate displacement required
float fOverlap = 0.5f * (fDistance - ball.radius - target.radius);
// Displace Current Ball away from collision
ball.px -= fOverlap * (ball.px - target.px) / fDistance;
ball.py -= fOverlap * (ball.py - target.py) / fDistance;
// Displace Target Ball away from collision - Note, this should affect the timing of the target ball
// and it does, but this is absorbed by the target ball calculating its own time delta later on
target.px += fOverlap * (ball.px - target.px) / fDistance;
target.py += fOverlap * (ball.py - target.py) / fDistance;
}
}
}
// Time displacement - we knew the velocity of the ball, so we can estimate the distance it should have covered
// however due to collisions it could not do the full distance, so we look at the actual distance to the collision
// point and calculate how much time that journey would have taken using the speed of the object. Therefore
// we can now work out how much time remains in that timestep.
float fIntendedSpeed = sqrtf(ball.vx * ball.vx + ball.vy * ball.vy);
float fIntendedDistance = fIntendedSpeed * ball.fSimTimeRemaining;
float fActualDistance = sqrtf((ball.px - ball.ox)*(ball.px - ball.ox) + (ball.py - ball.oy)*(ball.py - ball.oy));
float fActualTime = fActualDistance / fIntendedSpeed;
// After static resolution, there may be some time still left for this epoch, so allow simulation to continue
ball.fSimTimeRemaining = ball.fSimTimeRemaining - fActualTime;
}
// Now work out dynamic collisions
float fEfficiency = 1.00f;
for (auto c : vecCollidingPairs)
{
sBall *b1 = c.first, *b2 = c.second;
// Distance between balls
float fDistance = sqrtf((b1->px - b2->px)*(b1->px - b2->px) + (b1->py - b2->py)*(b1->py - b2->py));
// Normal
float nx = (b2->px - b1->px) / fDistance;
float ny = (b2->py - b1->py) / fDistance;
// Tangent
float tx = -ny;
float ty = nx;
// Dot Product Tangent
float dpTan1 = b1->vx * tx + b1->vy * ty;
float dpTan2 = b2->vx * tx + b2->vy * ty;
// Dot Product Normal
float dpNorm1 = b1->vx * nx + b1->vy * ny;
float dpNorm2 = b2->vx * nx + b2->vy * ny;
// Conservation of momentum in 1D
float m1 = fEfficiency * (dpNorm1 * (b1->mass - b2->mass) + 2.0f * b2->mass * dpNorm2) / (b1->mass + b2->mass);
float m2 = fEfficiency * (dpNorm2 * (b2->mass - b1->mass) + 2.0f * b1->mass * dpNorm1) / (b1->mass + b2->mass);
// Update ball velocities
b1->vx = tx * dpTan1 + nx * m1;
b1->vy = ty * dpTan1 + ny * m1;
b2->vx = tx * dpTan2 + nx * m2;
b2->vy = ty * dpTan2 + ny * m2;
}
// Remove collisions
vecCollidingPairs.clear();
// Remove fake balls
for (auto &b : vecFakeBalls) delete b;
vecFakeBalls.clear();
}
}
// Clear Screen
Fill(0, 0, ScreenWidth(), ScreenHeight(), ' ');
// Draw Lines
for (auto line : vecLines)
{
FillCircle(line.sx, line.sy, line.radius, PIXEL_HALF, FG_WHITE);
FillCircle(line.ex, line.ey, line.radius, PIXEL_HALF, FG_WHITE);
float nx = -(line.ey - line.sy);
float ny = (line.ex - line.sx);
float d = sqrt(nx*nx + ny * ny);
nx /= d;
ny /= d;
DrawLine((line.sx + nx * line.radius), (line.sy + ny * line.radius), (line.ex + nx * line.radius), (line.ey + ny * line.radius));
DrawLine((line.sx - nx * line.radius), (line.sy - ny * line.radius), (line.ex - nx * line.radius), (line.ey - ny * line.radius));
}
// Draw Balls
for (auto ball : vecBalls)
FillCircle(ball.px, ball.py, ball.radius, PIXEL_SOLID, FG_RED);
// Draw Cue
if (pSelectedBall != nullptr)
DrawLine(pSelectedBall->px, pSelectedBall->py, m_mousePosX, m_mousePosY, PIXEL_SOLID, FG_BLUE);
return true;
}
};
int main()
{
CirclePhysics game;
if (game.ConstructConsole(320, 240, 4, 4))
game.Start();
else
wcout << L"Could not construct console" << endl;
return 0;
};