You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
290 lines
10 KiB
290 lines
10 KiB
7 years ago
|
/*
|
||
|
OneLoneCoder.com - PathFinding A*
|
||
|
"No more getting lost..." - @Javidx9
|
||
|
|
||
|
Disclaimer
|
||
|
~~~~~~~~~~
|
||
|
I don't care what you use this for. It's intended to be educational, and perhaps
|
||
|
to the oddly minded - a little bit of fun. Please hack this, change it and use it
|
||
|
in any way you see fit. BUT, you acknowledge that I am not responsible for anything
|
||
|
bad that happens as a result of your actions. However, if good stuff happens, I
|
||
|
would appreciate a shout out, or at least give the blog some publicity for me.
|
||
|
Cheers!
|
||
|
|
||
|
Background
|
||
|
~~~~~~~~~~
|
||
|
The A* path finding algorithm is a widely used and powerful shortest path
|
||
|
finding node traversal algorithm. A heuristic is used to bias the algorithm
|
||
|
towards success. This code is probably more interesting than the video. :-/
|
||
|
|
||
|
|
||
|
Author
|
||
|
~~~~~~
|
||
|
Twitter: @javidx9
|
||
|
Blog: www.onelonecoder.com
|
||
|
|
||
|
Video:
|
||
|
~~~~~~
|
||
|
https://youtu.be/icZj67PTFhc
|
||
|
|
||
|
Last Updated: 08/10/2017
|
||
|
*/
|
||
|
|
||
|
#include <iostream>
|
||
|
#include <string>
|
||
|
#include <algorithm>
|
||
|
using namespace std;
|
||
|
|
||
|
#include "olcConsoleGameEngine.h"
|
||
|
|
||
|
class OneLoneCoder_PathFinding : public olcConsoleGameEngine
|
||
|
{
|
||
|
public:
|
||
|
OneLoneCoder_PathFinding()
|
||
|
{
|
||
|
m_sAppName = L"Path Finding";
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
|
||
|
struct sNode
|
||
|
{
|
||
|
bool bObstacle = false; // Is the node an obstruction?
|
||
|
bool bVisited = false; // Have we searched this node before?
|
||
|
float fGlobalGoal; // Distance to goal so far
|
||
|
float fLocalGoal; // Distance to goal if we took the alternative route
|
||
|
int x; // Nodes position in 2D space
|
||
|
int y;
|
||
|
vector<sNode*> vecNeighbours; // Connections to neighbours
|
||
|
sNode* parent; // Node connecting to this node that offers shortest parent
|
||
|
};
|
||
|
|
||
|
sNode *nodes = nullptr;
|
||
|
int nMapWidth = 16;
|
||
|
int nMapHeight = 16;
|
||
|
|
||
|
sNode *nodeStart = nullptr;
|
||
|
sNode *nodeEnd = nullptr;
|
||
|
|
||
|
|
||
|
protected:
|
||
|
virtual bool OnUserCreate()
|
||
|
{
|
||
|
// Create a 2D array of nodes - this is for convenience of rendering and construction
|
||
|
// and is not required for the algorithm to work - the nodes could be placed anywhere
|
||
|
// in any space, in multiple dimensions...
|
||
|
nodes = new sNode[nMapWidth * nMapHeight];
|
||
|
for (int x = 0; x < nMapWidth; x++)
|
||
|
for (int y = 0; y < nMapHeight; y++)
|
||
|
{
|
||
|
nodes[y * nMapWidth + x].x = x; // ...because we give each node its own coordinates
|
||
|
nodes[y * nMapWidth + x].y = y;
|
||
|
nodes[y * nMapWidth + x].bObstacle = false;
|
||
|
nodes[y * nMapWidth + x].parent = nullptr;
|
||
|
nodes[y * nMapWidth + x].bVisited = false;
|
||
|
}
|
||
|
|
||
|
// Create connections - in this case nodes are on a regular grid
|
||
|
for (int x = 0; x < nMapWidth; x++)
|
||
|
for (int y = 0; y < nMapHeight; y++)
|
||
|
{
|
||
|
if(y>0)
|
||
|
nodes[y*nMapWidth + x].vecNeighbours.push_back(&nodes[(y - 1) * nMapWidth + (x + 0)]);
|
||
|
if(y<nMapHeight-1)
|
||
|
nodes[y*nMapWidth + x].vecNeighbours.push_back(&nodes[(y + 1) * nMapWidth + (x + 0)]);
|
||
|
if (x>0)
|
||
|
nodes[y*nMapWidth + x].vecNeighbours.push_back(&nodes[(y + 0) * nMapWidth + (x - 1)]);
|
||
|
if(x<nMapWidth-1)
|
||
|
nodes[y*nMapWidth + x].vecNeighbours.push_back(&nodes[(y + 0) * nMapWidth + (x + 1)]);
|
||
|
|
||
|
// We can also connect diagonally
|
||
|
/*if (y>0 && x>0)
|
||
|
nodes[y*nMapWidth + x].vecNeighbours.push_back(&nodes[(y - 1) * nMapWidth + (x - 1)]);
|
||
|
if (y<nMapHeight-1 && x>0)
|
||
|
nodes[y*nMapWidth + x].vecNeighbours.push_back(&nodes[(y + 1) * nMapWidth + (x - 1)]);
|
||
|
if (y>0 && x<nMapWidth-1)
|
||
|
nodes[y*nMapWidth + x].vecNeighbours.push_back(&nodes[(y - 1) * nMapWidth + (x + 1)]);
|
||
|
if (y<nMapHeight - 1 && x<nMapWidth-1)
|
||
|
nodes[y*nMapWidth + x].vecNeighbours.push_back(&nodes[(y + 1) * nMapWidth + (x + 1)]);
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
// Manually positio the start and end markers so they are not nullptr
|
||
|
nodeStart = &nodes[(nMapHeight / 2) * nMapWidth + 1];
|
||
|
nodeEnd = &nodes[(nMapHeight / 2) * nMapWidth + nMapWidth-2];
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool Solve_AStar()
|
||
|
{
|
||
|
// Reset Navigation Graph - default all node states
|
||
|
for (int x = 0; x < nMapWidth; x++)
|
||
|
for (int y = 0; y < nMapHeight; y++)
|
||
|
{
|
||
|
nodes[y*nMapWidth + x].bVisited = false;
|
||
|
nodes[y*nMapWidth + x].fGlobalGoal = INFINITY;
|
||
|
nodes[y*nMapWidth + x].fLocalGoal = INFINITY;
|
||
|
nodes[y*nMapWidth + x].parent = nullptr; // No parents
|
||
|
}
|
||
|
|
||
|
auto distance = [](sNode* a, sNode* b) // For convenience
|
||
|
{
|
||
|
return sqrtf((a->x - b->x)*(a->x - b->x) + (a->y - b->y)*(a->y - b->y));
|
||
|
};
|
||
|
|
||
|
auto heuristic = [distance](sNode* a, sNode* b) // So we can experiment with heuristic
|
||
|
{
|
||
|
return distance(a, b);
|
||
|
};
|
||
|
|
||
|
// Setup starting conditions
|
||
|
sNode *nodeCurrent = nodeStart;
|
||
|
nodeStart->fLocalGoal = 0.0f;
|
||
|
nodeStart->fGlobalGoal = heuristic(nodeStart, nodeEnd);
|
||
|
|
||
|
// Add start node to not tested list - this will ensure it gets tested.
|
||
|
// As the algorithm progresses, newly discovered nodes get added to this
|
||
|
// list, and will themselves be tested later
|
||
|
list<sNode*> listNotTestedNodes;
|
||
|
listNotTestedNodes.push_back(nodeStart);
|
||
|
|
||
|
// if the not tested list contains nodes, there may be better paths
|
||
|
// which have not yet been explored. However, we will also stop
|
||
|
// searching when we reach the target - there may well be better
|
||
|
// paths but this one will do - it wont be the longest.
|
||
|
while (!listNotTestedNodes.empty() && nodeCurrent != nodeEnd)// Find absolutely shortest path // && nodeCurrent != nodeEnd)
|
||
|
{
|
||
|
// Sort Untested nodes by global goal, so lowest is first
|
||
|
listNotTestedNodes.sort([](const sNode* lhs, const sNode* rhs){ return lhs->fGlobalGoal < rhs->fGlobalGoal; } );
|
||
|
|
||
|
// Front of listNotTestedNodes is potentially the lowest distance node. Our
|
||
|
// list may also contain nodes that have been visited, so ditch these...
|
||
|
while(!listNotTestedNodes.empty() && listNotTestedNodes.front()->bVisited)
|
||
|
listNotTestedNodes.pop_front();
|
||
|
|
||
|
// ...or abort because there are no valid nodes left to test
|
||
|
if (listNotTestedNodes.empty())
|
||
|
break;
|
||
|
|
||
|
nodeCurrent = listNotTestedNodes.front();
|
||
|
nodeCurrent->bVisited = true; // We only explore a node once
|
||
|
|
||
|
|
||
|
// Check each of this node's neighbours...
|
||
|
for (auto nodeNeighbour : nodeCurrent->vecNeighbours)
|
||
|
{
|
||
|
// ... and only if the neighbour is not visited and is
|
||
|
// not an obstacle, add it to NotTested List
|
||
|
if (!nodeNeighbour->bVisited && nodeNeighbour->bObstacle == 0)
|
||
|
listNotTestedNodes.push_back(nodeNeighbour);
|
||
|
|
||
|
// Calculate the neighbours potential lowest parent distance
|
||
|
float fPossiblyLowerGoal = nodeCurrent->fLocalGoal + distance(nodeCurrent, nodeNeighbour);
|
||
|
|
||
|
// If choosing to path through this node is a lower distance than what
|
||
|
// the neighbour currently has set, update the neighbour to use this node
|
||
|
// as the path source, and set its distance scores as necessary
|
||
|
if (fPossiblyLowerGoal < nodeNeighbour->fLocalGoal)
|
||
|
{
|
||
|
nodeNeighbour->parent = nodeCurrent;
|
||
|
nodeNeighbour->fLocalGoal = fPossiblyLowerGoal;
|
||
|
|
||
|
// The best path length to the neighbour being tested has changed, so
|
||
|
// update the neighbour's score. The heuristic is used to globally bias
|
||
|
// the path algorithm, so it knows if its getting better or worse. At some
|
||
|
// point the algo will realise this path is worse and abandon it, and then go
|
||
|
// and search along the next best path.
|
||
|
nodeNeighbour->fGlobalGoal = nodeNeighbour->fLocalGoal + heuristic(nodeNeighbour, nodeEnd);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
virtual bool OnUserUpdate(float fElapsedTime)
|
||
|
{
|
||
|
int nNodeSize = 9;
|
||
|
int nNodeBorder = 2;
|
||
|
|
||
|
// Use integer division to nicely get cursor position in node space
|
||
|
int nSelectedNodeX = m_mousePosX / nNodeSize;
|
||
|
int nSelectedNodeY = m_mousePosY / nNodeSize;
|
||
|
|
||
|
if (m_mouse[0].bReleased) // Use mouse to draw maze, shift and ctrl to place start and end
|
||
|
{
|
||
|
if(nSelectedNodeX >=0 && nSelectedNodeX < nMapWidth)
|
||
|
if (nSelectedNodeY >= 0 && nSelectedNodeY < nMapHeight)
|
||
|
{
|
||
|
if (m_keys[VK_SHIFT].bHeld)
|
||
|
nodeStart = &nodes[nSelectedNodeY * nMapWidth + nSelectedNodeX];
|
||
|
else if (m_keys[VK_CONTROL].bHeld)
|
||
|
nodeEnd = &nodes[nSelectedNodeY * nMapWidth + nSelectedNodeX];
|
||
|
else
|
||
|
nodes[nSelectedNodeY * nMapWidth + nSelectedNodeX].bObstacle = !nodes[nSelectedNodeY * nMapWidth + nSelectedNodeX].bObstacle;
|
||
|
|
||
|
Solve_AStar(); // Solve in "real-time" gives a nice effect
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Draw Connections First - lines from this nodes position to its
|
||
|
// connected neighbour node positions
|
||
|
Fill(0, 0, ScreenWidth(), ScreenHeight(), L' ');
|
||
|
for (int x = 0; x < nMapWidth; x++)
|
||
|
for (int y = 0; y < nMapHeight; y++)
|
||
|
{
|
||
|
for (auto n : nodes[y*nMapWidth + x].vecNeighbours)
|
||
|
{
|
||
|
DrawLine(x*nNodeSize + nNodeSize / 2, y*nNodeSize + nNodeSize / 2,
|
||
|
n->x*nNodeSize + nNodeSize / 2, n->y*nNodeSize + nNodeSize / 2, PIXEL_SOLID, FG_DARK_BLUE);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Draw Nodes on top
|
||
|
for (int x = 0; x < nMapWidth; x++)
|
||
|
for (int y = 0; y < nMapHeight; y++)
|
||
|
{
|
||
|
|
||
|
Fill(x*nNodeSize + nNodeBorder, y*nNodeSize + nNodeBorder,
|
||
|
(x + 1)*nNodeSize - nNodeBorder, (y + 1)*nNodeSize - nNodeBorder,
|
||
|
PIXEL_HALF, nodes[y * nMapWidth + x].bObstacle ? FG_WHITE : FG_BLUE);
|
||
|
|
||
|
if (nodes[y * nMapWidth + x].bVisited)
|
||
|
Fill(x*nNodeSize + nNodeBorder, y*nNodeSize + nNodeBorder, (x + 1)*nNodeSize - nNodeBorder, (y + 1)*nNodeSize - nNodeBorder, PIXEL_SOLID, FG_BLUE);
|
||
|
|
||
|
if(&nodes[y * nMapWidth + x] == nodeStart)
|
||
|
Fill(x*nNodeSize + nNodeBorder, y*nNodeSize + nNodeBorder, (x + 1)*nNodeSize - nNodeBorder, (y + 1)*nNodeSize - nNodeBorder, PIXEL_SOLID, FG_GREEN);
|
||
|
|
||
|
if(&nodes[y * nMapWidth + x] == nodeEnd)
|
||
|
Fill(x*nNodeSize + nNodeBorder, y*nNodeSize + nNodeBorder, (x + 1)*nNodeSize - nNodeBorder, (y + 1)*nNodeSize - nNodeBorder, PIXEL_SOLID, FG_RED);
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
// Draw Path by starting ath the end, and following the parent node trail
|
||
|
// back to the start - the start node will not have a parent path to follow
|
||
|
if (nodeEnd != nullptr)
|
||
|
{
|
||
|
sNode *p = nodeEnd;
|
||
|
while (p->parent != nullptr)
|
||
|
{
|
||
|
DrawLine(p->x*nNodeSize + nNodeSize / 2, p->y*nNodeSize + nNodeSize / 2,
|
||
|
p->parent->x*nNodeSize + nNodeSize / 2, p->parent->y*nNodeSize + nNodeSize / 2, PIXEL_SOLID, FG_YELLOW);
|
||
|
|
||
|
// Set next node to this node's parent
|
||
|
p = p->parent;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
int main()
|
||
|
{
|
||
|
OneLoneCoder_PathFinding game;
|
||
|
game.ConstructConsole(160, 160, 6, 6);
|
||
|
game.Start();
|
||
|
return 0;
|
||
|
}
|