Upstream for PGE updates.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
olcPixelGameEngine/OneLoneCoder_PGE_PathFindin...

426 lines
14 KiB

/*
OneLoneCoder.com - Path Finding #2 - Wave Propagation & Potential Fields
"...never get lost again, so long as you know where you are" - @Javidx9
Background
~~~~~~~~~~
A nice follow up alternative to the A* Algorithm. Wave propagation is less
applicable to multiple objects with multiple destinations, but fantatsic
for multiple objects all reaching the same destination.
WARNING! This code is NOT OPTIMAL!! It is however very robust. There
are many ways to optimise this further.
License (OLC-3)
~~~~~~~~~~~~~~~
Copyright 2018 OneLoneCoder.com
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions or derivations of source code must retain the above
copyright notice, this list of conditions and the following disclaimer.
2. Redistributions or derivative works in binary form must reproduce
the above copyright notice. This list of conditions and the following
disclaimer must be reproduced in the documentation and/or other
materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Links
~~~~~
YouTube: https://www.youtube.com/javidx9
Discord: https://discord.gg/WhwHUMV
Twitter: https://www.twitter.com/javidx9
Twitch: https://www.twitch.tv/javidx9
GitHub: https://www.github.com/onelonecoder
Patreon: https://www.patreon/javidx9
Homepage: https://www.onelonecoder.com
Relevant Videos
~~~~~~~~~~~~~~~
Part #1 https://youtu.be/icZj67PTFhc
Part #2 https://youtu.be/0ihciMKlcP8
Author
~~~~~~
David Barr, aka javidx9, <EFBFBD>OneLoneCoder 2018
*/
#define OLC_PGE_APPLICATION
#include "olcPixelGameEngine.h"
#include <vector>
#include <list>
#include <algorithm>
#include <utility>
// Override base class with your custom functionality
class PathFinding_FlowFields : public olc::PixelGameEngine
{
public:
PathFinding_FlowFields()
{
sAppName = "PathFinding - Flow Fields";
}
private:
int nMapWidth;
int nMapHeight;
int nCellSize;
int nBorderWidth;
bool *bObstacleMap;
int *nFlowFieldZ;
float *fFlowFieldY;
float *fFlowFieldX;
int nStartX;
int nStartY;
int nEndX;
int nEndY;
int nWave = 1;
public:
bool OnUserCreate() override
{
nBorderWidth = 4;
nCellSize = 32;
nMapWidth = ScreenWidth() / nCellSize;
nMapHeight = ScreenHeight() / nCellSize;
bObstacleMap = new bool[nMapWidth * nMapHeight]{ false };
nFlowFieldZ = new int[nMapWidth * nMapHeight]{ 0 };
fFlowFieldX = new float[nMapWidth * nMapHeight]{ 0 };
fFlowFieldY = new float[nMapWidth * nMapHeight]{ 0 };
nStartX = 3;
nStartY = 7;
nEndX = 12;
nEndY = 7;
return true;
}
bool OnUserUpdate(float fElapsedTime) override
{
// Little convenience lambda 2D -> 1D
auto p = [&](int x, int y) { return y * nMapWidth + x; };
// User Input
int nSelectedCellX = GetMouseX() / nCellSize;
int nSelectedCellY = GetMouseY() / nCellSize;
if (GetMouse(0).bReleased)
{
// Toggle Obstacle if mouse left clicked
bObstacleMap[p(nSelectedCellX, nSelectedCellY)] =
!bObstacleMap[p(nSelectedCellX, nSelectedCellY)];
}
if (GetMouse(1).bReleased)
{
nStartX = nSelectedCellX;
nStartY = nSelectedCellY;
}
if (GetKey(olc::Key::Q).bReleased)
{
nWave++;
}
if (GetKey(olc::Key::A).bReleased)
{
nWave--;
if (nWave == 0)
nWave = 1;
}
// 1) Prepare flow field, add a boundary, and add obstacles
// by setting the flow Field Height (Z) to -1
for (int x = 0; x < nMapWidth; x++)
{
for (int y = 0; y < nMapHeight; y++)
{
// Set border or obstacles
if (x == 0 || y == 0 || x == (nMapWidth - 1) || y == (nMapHeight - 1) || bObstacleMap[p(x, y)])
{
nFlowFieldZ[p(x, y)] = -1;
}
else
{
nFlowFieldZ[p(x, y)] = 0;
}
}
}
// 2) Propagate a wave (i.e. flood-fill) from target location. Here I use
// a tuple, of {x, y, distance} - though you could use a struct or
// similar.
std::list<std::tuple<int, int, int>> nodes;
// Add the first discovered node - the target location, with a distance of 1
nodes.push_back({ nEndX, nEndY, 1 });
while (!nodes.empty())
{
// Each iteration through the discovered nodes may create newly discovered
// nodes, so I maintain a second list. It's important not to contaminate
// the list being iterated through.
std::list<std::tuple<int, int, int>> new_nodes;
// Now iterate through each discovered node. If it has neighbouring nodes
// that are empty space and undiscovered, add those locations to the
// new nodes list
for (auto &n : nodes)
{
int x = std::get<0>(n); // Map X-Coordinate
int y = std::get<1>(n); // Map Y-Coordinate
int d = std::get<2>(n); // Distance From Target Location
// Set distance count for this node. NOte that when we add nodes we add 1
// to this distance. This emulates propagating a wave across the map, where
// the front of that wave increments each iteration. In this way, we can
// propagate distance information 'away from target location'
nFlowFieldZ[p(x, y)] = d;
// Add neigbour nodes if unmarked, i.e their "height" is 0. Any discovered
// node or obstacle will be non-zero
// Check East
if ((x + 1) < nMapWidth && nFlowFieldZ[p(x + 1, y)] == 0)
new_nodes.push_back({ x + 1, y, d + 1 });
// Check West
if ((x - 1) >= 0 && nFlowFieldZ[p(x - 1, y)] == 0)
new_nodes.push_back({ x - 1, y, d + 1 });
// Check South
if ((y + 1) < nMapHeight && nFlowFieldZ[p(x, y + 1)] == 0)
new_nodes.push_back({ x, y + 1, d + 1 });
// Check North
if ((y - 1) >= 0 && nFlowFieldZ[p(x, y - 1)] == 0)
new_nodes.push_back({ x, y - 1, d + 1 });
}
// We will now have potentially multiple nodes for a single location. This means our
// algorithm will never complete! So we must remove duplicates form our new node list.
// Im doing this with some clever code - but it is not performant(!) - it is merely
// convenient. I'd suggest doing away with overhead structures like linked lists and sorts
// if you are aiming for fastest path finding.
// Sort the nodes - This will stack up nodes that are similar: A, B, B, B, B, C, D, D, E, F, F
new_nodes.sort([&](const std::tuple<int, int, int> &n1, const std::tuple<int, int, int> &n2)
{
// In this instance I dont care how the values are sorted, so long as nodes that
// represent the same location are adjacent in the list. I can use the p() lambda
// to generate a unique 1D value for a 2D coordinate, so I'll sort by that.
return p(std::get<0>(n1), std::get<1>(n1)) < p(std::get<0>(n2), std::get<1>(n2));
});
// Use "unique" function to remove adjacent duplicates : A, B, -, -, -, C, D, -, E, F -
// and also erase them : A, B, C, D, E, F
new_nodes.unique([&](const std::tuple<int, int, int> &n1, const std::tuple<int, int, int> &n2)
{
return p(std::get<0>(n1), std::get<1>(n1)) == p(std::get<0>(n2), std::get<1>(n2));
});
// We've now processed all the discoverd nodes, so clear the list, and add the newly
// discovered nodes for processing on the next iteration
nodes.clear();
nodes.insert(nodes.begin(), new_nodes.begin(), new_nodes.end());
// When there are no more newly discovered nodes, we have "flood filled" the entire
// map. The propagation phase of the algorithm is complete
}
// 3) Create Path. Starting a start location, create a path of nodes until you reach target
// location. At each node find the neighbour with the lowest "distance" score.
std::list<std::pair<int, int>> path;
path.push_back({ nStartX, nStartY });
int nLocX = nStartX;
int nLocY = nStartY;
bool bNoPath = false;
while (!(nLocX == nEndX && nLocY == nEndY) && !bNoPath)
{
std::list<std::tuple<int, int, int>> listNeighbours;
// 4-Way Connectivity
if ((nLocY - 1) >= 0 && nFlowFieldZ[p(nLocX, nLocY - 1)] > 0)
listNeighbours.push_back({ nLocX, nLocY - 1, nFlowFieldZ[p(nLocX, nLocY - 1)] });
if ((nLocX + 1) < nMapWidth && nFlowFieldZ[p(nLocX + 1, nLocY)] > 0)
listNeighbours.push_back({ nLocX + 1, nLocY, nFlowFieldZ[p(nLocX + 1, nLocY)] });
if ((nLocY + 1) < nMapHeight && nFlowFieldZ[p(nLocX, nLocY + 1)] > 0)
listNeighbours.push_back({ nLocX, nLocY + 1, nFlowFieldZ[p(nLocX, nLocY + 1)] });
if ((nLocX - 1) >= 0 && nFlowFieldZ[p(nLocX - 1, nLocY)] > 0)
listNeighbours.push_back({ nLocX - 1, nLocY, nFlowFieldZ[p(nLocX - 1, nLocY)] });
// 8-Way Connectivity
if ((nLocY - 1) >= 0 && (nLocX - 1) >= 0 && nFlowFieldZ[p(nLocX - 1, nLocY - 1)] > 0)
listNeighbours.push_back({ nLocX - 1, nLocY - 1, nFlowFieldZ[p(nLocX - 1, nLocY - 1)] });
if ((nLocY - 1) >= 0 && (nLocX + 1) < nMapWidth && nFlowFieldZ[p(nLocX + 1, nLocY - 1)] > 0)
listNeighbours.push_back({ nLocX + 1, nLocY - 1, nFlowFieldZ[p(nLocX + 1, nLocY - 1)] });
if ((nLocY + 1) < nMapHeight && (nLocX - 1) >= 0 && nFlowFieldZ[p(nLocX - 1, nLocY + 1)] > 0)
listNeighbours.push_back({ nLocX - 1, nLocY + 1, nFlowFieldZ[p(nLocX - 1, nLocY + 1)] });
if ((nLocY + 1) < nMapHeight && (nLocX + 1) < nMapWidth && nFlowFieldZ[p(nLocX + 1, nLocY + 1)] > 0)
listNeighbours.push_back({ nLocX + 1, nLocY + 1, nFlowFieldZ[p(nLocX + 1, nLocY + 1)] });
// Sprt neigbours based on height, so lowest neighbour is at front
// of list
listNeighbours.sort([&](const std::tuple<int, int, int> &n1, const std::tuple<int, int, int> &n2)
{
return std::get<2>(n1) < std::get<2>(n2); // Compare distances
});
if (listNeighbours.empty()) // Neighbour is invalid or no possible path
bNoPath = true;
else
{
nLocX = std::get<0>(listNeighbours.front());
nLocY = std::get<1>(listNeighbours.front());
path.push_back({ nLocX, nLocY });
}
}
// 4) Create Flow "Field"
for (int x = 1; x < nMapWidth - 1; x++)
{
for (int y = 1; y < nMapHeight - 1; y++)
{
float vx = 0.0f;
float vy = 0.0f;
vy -= (float)((nFlowFieldZ[p(x, y + 1)] <= 0 ? nFlowFieldZ[p(x, y)] : nFlowFieldZ[p(x, y + 1)]) - nFlowFieldZ[p(x, y)]);
vx -= (float)((nFlowFieldZ[p(x + 1, y)] <= 0 ? nFlowFieldZ[p(x, y)] : nFlowFieldZ[p(x + 1, y)]) - nFlowFieldZ[p(x, y)]);
vy += (float)((nFlowFieldZ[p(x, y - 1)] <= 0 ? nFlowFieldZ[p(x, y)] : nFlowFieldZ[p(x, y - 1)]) - nFlowFieldZ[p(x, y)]);
vx += (float)((nFlowFieldZ[p(x - 1, y)] <= 0 ? nFlowFieldZ[p(x, y)] : nFlowFieldZ[p(x - 1, y)]) - nFlowFieldZ[p(x, y)]);
float r = 1.0f / sqrtf(vx*vx + vy * vy);
fFlowFieldX[p(x, y)] = vx * r;
fFlowFieldY[p(x, y)] = vy * r;
}
}
// Draw Map
Clear(olc::BLACK);
for (int x = 0; x < nMapWidth; x++)
{
for (int y = 0; y < nMapHeight; y++)
{
olc::Pixel colour = olc::BLUE;
if (bObstacleMap[p(x, y)])
colour = olc::GREY;
if (nWave == nFlowFieldZ[p(x, y)])
colour = olc::DARK_CYAN;
if (x == nStartX && y == nStartY)
colour = olc::GREEN;
if (x == nEndX && y == nEndY)
colour = olc::RED;
// Draw Base
FillRect(x * nCellSize, y * nCellSize, nCellSize - nBorderWidth, nCellSize - nBorderWidth, colour);
// Draw "potential" or "distance" or "height" :D
//DrawString(x * nCellSize, y * nCellSize, std::to_string(nFlowFieldZ[p(x, y)]), olc::WHITE);
if (nFlowFieldZ[p(x, y)] > 0)
{
float ax[4], ay[4];
float fAngle = atan2f(fFlowFieldY[p(x, y)], fFlowFieldX[p(x, y)]);
float fRadius = (float)(nCellSize - nBorderWidth) / 2.0f;
int fOffsetX = x * nCellSize + ((nCellSize - nBorderWidth) / 2);
int fOffsetY = y * nCellSize + ((nCellSize - nBorderWidth) / 2);
ax[0] = cosf(fAngle) * fRadius + fOffsetX;
ay[0] = sinf(fAngle) * fRadius + fOffsetY;
ax[1] = cosf(fAngle) * -fRadius + fOffsetX;
ay[1] = sinf(fAngle) * -fRadius + fOffsetY;
ax[2] = cosf(fAngle + 0.1f) * fRadius * 0.7f + fOffsetX;
ay[2] = sinf(fAngle + 0.1f) * fRadius * 0.7f + fOffsetY;
ax[3] = cosf(fAngle - 0.1f) * fRadius * 0.7f + fOffsetX;
ay[3] = sinf(fAngle - 0.1f) * fRadius * 0.7f + fOffsetY;
DrawLine(ax[0], ay[0], ax[1], ay[1], olc::CYAN);
DrawLine(ax[0], ay[0], ax[2], ay[2], olc::CYAN);
DrawLine(ax[0], ay[0], ax[3], ay[3], olc::CYAN);
}
}
}
bool bFirstPoint = true;
int ox, oy;
for (auto &a : path)
{
if (bFirstPoint)
{
ox = a.first;
oy = a.second;
bFirstPoint = false;
}
else
{
DrawLine(
ox * nCellSize + ((nCellSize - nBorderWidth) / 2),
oy * nCellSize + ((nCellSize - nBorderWidth) / 2),
a.first * nCellSize + ((nCellSize - nBorderWidth) / 2),
a.second * nCellSize + ((nCellSize - nBorderWidth) / 2), olc::YELLOW);
ox = a.first;
oy = a.second;
FillCircle(ox * nCellSize + ((nCellSize - nBorderWidth) / 2), oy * nCellSize + ((nCellSize - nBorderWidth) / 2), 10, olc::YELLOW);
}
}
return true;
}
};
int main()
{
PathFinding_FlowFields demo;
if (demo.Construct(512, 480, 2, 2))
demo.Start();
return 0;
}