/* OneLoneCoder.com - Programming Balls! #2 Circle Vs Edge Collisions "...totally overkill for pong..." - @Javidx9 Disclaimer ~~~~~~~~~~ I don't care what you use this for. It's intended to be educational, and perhaps to the oddly minded - a little bit of fun. Please hack this, change it and use it in any way you see fit. BUT, you acknowledge that I am not responsible for anything bad that happens as a result of your actions. However, if good stuff happens, I would appreciate a shout out, or at least give the blog some publicity for me. Cheers! Background ~~~~~~~~~~ Collision detection engines can get quite complicated. This program shows the interactions between circular objects of different sizes and masses. Use Left mouse button to select and drag a ball to examin static collisions, and use Right mouse button to apply velocity to the balls as if using a pool/snooker/billiards cue. Author ~~~~~~ Twitter: @javidx9 Blog: www.onelonecoder.com Twitch: https://www.twitch.tv/javidx9 Discord: https://discord.gg/WhwHUMV Video: ~~~~~~ Part #1 https://youtu.be/LPzyNOHY3A4 Part #2 https://youtu.be/ebq7L2Wtbl4 Last Updated: 18/02/2017 */ #include #include using namespace std; #include "olcPixelGameEngine.h" struct sBall { float px, py; float vx, vy; float ax, ay; float ox, oy; float radius; float mass; float friction; int score; int id; float fSimTimeRemaining; olc::Pixel col; }; struct sLineSegment { float sx, sy; float ex, ey; float radius; }; class CirclePhysics : public olc::PixelGameEngine { public: CirclePhysics() { sAppName = "Circles V Edges"; } private: vector vecBalls; vector vecLines; vector> modelCircle; sBall* pSelectedBall = nullptr; olc::Sprite *spriteBalls = nullptr; sLineSegment* pSelectedLine = nullptr; bool bSelectedLineStart = false; void AddBall(float x, float y, float r = 5.0f, int s = 0) { sBall b; b.px = x; b.py = y; b.vx = 0; b.vy = 0; b.ax = 0; b.ay = 0; b.ox = 0; b.oy = 0; b.radius = r; b.mass = r * 10.0f; b.friction = 0.0f; b.score = s; b.fSimTimeRemaining = 0.0f; b.id = vecBalls.size(); b.col = olc::Pixel(rand() % 200 + 55, rand() % 200 + 55, rand() % 200 + 55); vecBalls.emplace_back(b); } public: bool OnUserCreate() { float fBallRadius = 4.0f; for (int i = 0; i <300; i++) AddBall(((float)rand()/(float)RAND_MAX) * ScreenWidth(), ((float)rand() / (float)RAND_MAX) * ScreenHeight(), fBallRadius); AddBall(28.0f, 33.0, fBallRadius * 3); AddBall(28.0f, 35.0, fBallRadius * 2); float fLineRadius = 4.0f; vecLines.push_back({ 12.0f, 4.0f, 64.0f, 4.0f, fLineRadius }); vecLines.push_back({ 76.0f, 4.0f, 132.0f, 4.0f, fLineRadius }); vecLines.push_back({ 12.0f, 68.0f, 64.0f, 68.0f, fLineRadius }); vecLines.push_back({ 76.0f, 68.0f, 132.0f, 68.0f, fLineRadius }); vecLines.push_back({ 4.0f, 12.0f, 4.0f, 60.0f, fLineRadius }); vecLines.push_back({ 140.0f, 12.0f, 140.0f, 60.0f, fLineRadius }); return true; } bool OnUserUpdate(float fElapsedTime) { auto DoCirclesOverlap = [](float x1, float y1, float r1, float x2, float y2, float r2) { return fabs((x1 - x2)*(x1 - x2) + (y1 - y2)*(y1 - y2)) <= ((r1 + r2) * (r1 + r2)); }; auto IsPointInCircle = [](float x1, float y1, float r1, float px, float py) { return fabs((x1 - px)*(x1 - px) + (y1 - py)*(y1 - py)) < (r1 * r1); }; if (GetMouse(0).bPressed) { // Check for selected ball pSelectedBall = nullptr; for (auto &ball : vecBalls) { if (IsPointInCircle(ball.px, ball.py, ball.radius, GetMouseX(), GetMouseY())) { pSelectedBall = &ball; break; } } // Check for selected line segment end pSelectedLine = nullptr; for (auto &line : vecLines) { if (IsPointInCircle(line.sx, line.sy, line.radius, GetMouseX(), GetMouseY())) { pSelectedLine = &line; bSelectedLineStart = true; break; } if (IsPointInCircle(line.ex, line.ey, line.radius, GetMouseX(), GetMouseY())) { pSelectedLine = &line; bSelectedLineStart = false; break; } } } if (GetMouse(0).bHeld) { if (pSelectedLine != nullptr) { if (bSelectedLineStart) { pSelectedLine->sx = GetMouseX(); pSelectedLine->sy = GetMouseY(); } else { pSelectedLine->ex = GetMouseX(); pSelectedLine->ey = GetMouseY(); } } } if (GetMouse(0).bReleased) { if (pSelectedBall != nullptr) { // Apply velocity pSelectedBall->vx = 5.0f * ((pSelectedBall->px) - GetMouseX()); pSelectedBall->vy = 5.0f * ((pSelectedBall->py) - GetMouseY()); } pSelectedBall = nullptr; pSelectedLine = nullptr; } if (GetMouse(1).bHeld) { for (auto &ball : vecBalls) { ball.vx += (GetMouseX() - ball.px) * 0.01f; ball.vy += (GetMouseY() - ball.py) * 0.01f; } } vector> vecCollidingPairs; vector vecFakeBalls; // Threshold indicating stability of object float fStable = 0.005f; // Multiple simulation updates with small time steps permit more accurate physics // and realistic results at the expense of CPU time of course int nSimulationUpdates = 4; // Multiple collision trees require more steps to resolve. Normally we would // continue simulation until the object has no simulation time left for this // epoch, however this is risky as the system may never find stability, so we // can clamp it here int nMaxSimulationSteps = 15; // Break up the frame elapsed time into smaller deltas for each simulation update float fSimElapsedTime = fElapsedTime / (float)nSimulationUpdates; // Main simulation loop for (int i = 0; i < nSimulationUpdates; i++) { // Set all balls time to maximum for this epoch for (auto &ball : vecBalls) ball.fSimTimeRemaining = fSimElapsedTime; // Erode simulation time on a per objec tbasis, depending upon what happens // to it during its journey through this epoch for (int j = 0; j < nMaxSimulationSteps; j++) { // Update Ball Positions for (auto &ball : vecBalls) { if (ball.fSimTimeRemaining > 0.0f) { ball.ox = ball.px; // Store original position this epoch ball.oy = ball.py; ball.ax = -ball.vx * 0.8f; // Apply drag and gravity ball.ay = -ball.vy * 0.8f + 100.0f; ball.vx += ball.ax * ball.fSimTimeRemaining; // Update Velocity ball.vy += ball.ay * ball.fSimTimeRemaining; ball.px += ball.vx * ball.fSimTimeRemaining; // Update position ball.py += ball.vy * ball.fSimTimeRemaining; // Crudely wrap balls to screen - note this cause issues when collisions occur on screen boundaries if (ball.px < 0) ball.px += (float)ScreenWidth(); if (ball.px >= ScreenWidth()) ball.px -= (float)ScreenWidth(); if (ball.py < 0) ball.py += (float)ScreenHeight(); if (ball.py >= ScreenHeight()) ball.py -= (float)ScreenHeight(); // Stop ball when velocity is neglible if (fabs(ball.vx*ball.vx + ball.vy*ball.vy) < fStable) { ball.vx = 0; ball.vy = 0; } } } // Work out static collisions with walls and displace balls so no overlaps for (auto &ball : vecBalls) { float fDeltaTime = ball.fSimTimeRemaining; // Against Edges for (auto &edge : vecLines) { // Check that line formed by velocity vector, intersects with line segment float fLineX1 = edge.ex - edge.sx; float fLineY1 = edge.ey - edge.sy; float fLineX2 = ball.px - edge.sx; float fLineY2 = ball.py - edge.sy; float fEdgeLength = fLineX1 * fLineX1 + fLineY1 * fLineY1; // This is nifty - It uses the DP of the line segment vs the line to the object, to work out // how much of the segment is in the "shadow" of the object vector. The min and max clamp // this to lie between 0 and the line segment length, which is then normalised. We can // use this to calculate the closest point on the line segment float t = max(0, min(fEdgeLength, (fLineX1 * fLineX2 + fLineY1 * fLineY2))) / fEdgeLength; // Which we do here float fClosestPointX = edge.sx + t * fLineX1; float fClosestPointY = edge.sy + t * fLineY1; // And once we know the closest point, we can check if the ball has collided with the segment in the // same way we check if two balls have collided float fDistance = sqrtf((ball.px - fClosestPointX)*(ball.px - fClosestPointX) + (ball.py - fClosestPointY)*(ball.py - fClosestPointY)); if (fDistance <= (ball.radius + edge.radius)) { // Collision has occurred - treat collision point as a ball that cannot move. To make this // compatible with the dynamic resolution code below, we add a fake ball with an infinite mass // so it behaves like a solid object when the momentum calculations are performed sBall *fakeball = new sBall(); fakeball->radius = edge.radius; fakeball->mass = ball.mass * 0.8f; fakeball->px = fClosestPointX; fakeball->py = fClosestPointY; fakeball->vx = -ball.vx; // We will use these later to allow the lines to impart energy into ball fakeball->vy = -ball.vy; // if the lines are moving, i.e. like pinball flippers // Store Fake Ball vecFakeBalls.push_back(fakeball); // Add collision to vector of collisions for dynamic resolution vecCollidingPairs.push_back({ &ball, fakeball }); // Calculate displacement required float fOverlap = 1.0f * (fDistance - ball.radius - fakeball->radius); // Displace Current Ball away from collision ball.px -= fOverlap * (ball.px - fakeball->px) / fDistance; ball.py -= fOverlap * (ball.py - fakeball->py) / fDistance; } } // Against other balls for (auto &target : vecBalls) { if (ball.id != target.id) // Do not check against self { if (DoCirclesOverlap(ball.px, ball.py, ball.radius, target.px, target.py, target.radius)) { // Collision has occured vecCollidingPairs.push_back({ &ball, &target }); // Distance between ball centers float fDistance = sqrtf((ball.px - target.px)*(ball.px - target.px) + (ball.py - target.py)*(ball.py - target.py)); // Calculate displacement required float fOverlap = 0.5f * (fDistance - ball.radius - target.radius); // Displace Current Ball away from collision ball.px -= fOverlap * (ball.px - target.px) / fDistance; ball.py -= fOverlap * (ball.py - target.py) / fDistance; // Displace Target Ball away from collision - Note, this should affect the timing of the target ball // and it does, but this is absorbed by the target ball calculating its own time delta later on target.px += fOverlap * (ball.px - target.px) / fDistance; target.py += fOverlap * (ball.py - target.py) / fDistance; } } } // Time displacement - we knew the velocity of the ball, so we can estimate the distance it should have covered // however due to collisions it could not do the full distance, so we look at the actual distance to the collision // point and calculate how much time that journey would have taken using the speed of the object. Therefore // we can now work out how much time remains in that timestep. float fIntendedSpeed = sqrtf(ball.vx * ball.vx + ball.vy * ball.vy); float fIntendedDistance = fIntendedSpeed * ball.fSimTimeRemaining; float fActualDistance = sqrtf((ball.px - ball.ox)*(ball.px - ball.ox) + (ball.py - ball.oy)*(ball.py - ball.oy)); float fActualTime = fActualDistance / fIntendedSpeed; // After static resolution, there may be some time still left for this epoch, so allow simulation to continue ball.fSimTimeRemaining = ball.fSimTimeRemaining - fActualTime; } // Now work out dynamic collisions float fEfficiency = 1.00f; for (auto c : vecCollidingPairs) { sBall *b1 = c.first, *b2 = c.second; // Distance between balls float fDistance = sqrtf((b1->px - b2->px)*(b1->px - b2->px) + (b1->py - b2->py)*(b1->py - b2->py)); // Normal float nx = (b2->px - b1->px) / fDistance; float ny = (b2->py - b1->py) / fDistance; // Tangent float tx = -ny; float ty = nx; // Dot Product Tangent float dpTan1 = b1->vx * tx + b1->vy * ty; float dpTan2 = b2->vx * tx + b2->vy * ty; // Dot Product Normal float dpNorm1 = b1->vx * nx + b1->vy * ny; float dpNorm2 = b2->vx * nx + b2->vy * ny; // Conservation of momentum in 1D float m1 = fEfficiency * (dpNorm1 * (b1->mass - b2->mass) + 2.0f * b2->mass * dpNorm2) / (b1->mass + b2->mass); float m2 = fEfficiency * (dpNorm2 * (b2->mass - b1->mass) + 2.0f * b1->mass * dpNorm1) / (b1->mass + b2->mass); // Update ball velocities b1->vx = tx * dpTan1 + nx * m1; b1->vy = ty * dpTan1 + ny * m1; b2->vx = tx * dpTan2 + nx * m2; b2->vy = ty * dpTan2 + ny * m2; } // Remove collisions vecCollidingPairs.clear(); // Remove fake balls for (auto &b : vecFakeBalls) delete b; vecFakeBalls.clear(); } } // Clear Screen FillRect(0, 0, ScreenWidth(), ScreenHeight(), olc::Pixel(0, 0, 0)); // Draw Lines for (auto line : vecLines) { FillCircle(line.sx, line.sy, line.radius, olc::Pixel(255,255,255)); FillCircle(line.ex, line.ey, line.radius, olc::Pixel(128, 128, 128)); float nx = -(line.ey - line.sy); float ny = (line.ex - line.sx); float d = sqrt(nx*nx + ny * ny); nx /= d; ny /= d; DrawLine((line.sx + nx * line.radius), (line.sy + ny * line.radius), (line.ex + nx * line.radius), (line.ey + ny * line.radius), olc::Pixel(255, 255, 255)); DrawLine((line.sx - nx * line.radius), (line.sy - ny * line.radius), (line.ex - nx * line.radius), (line.ey - ny * line.radius), olc::Pixel(255, 255, 255)); } // Draw Balls for (auto ball : vecBalls) FillCircle(ball.px, ball.py, ball.radius, ball.col); // Draw Cue if (pSelectedBall != nullptr) DrawLine(pSelectedBall->px, pSelectedBall->py, GetMouseX(), GetMouseY(), olc::Pixel(0, 0, 255)); return true; } }; int main() { CirclePhysics game; if (game.Construct(640, 480, 2, 2)) game.Start(); else wcout << L"Could not construct console" << endl; return 0; };