/* Blithering About Dithering (Floyd-Steinberg) "2022 lets go!" - javidx9 License (OLC-3) ~~~~~~~~~~~~~~~ Copyright 2018 - 2021 OneLoneCoder.com Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions or derivations of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions or derivative works in binary form must reproduce the above copyright notice. This list of conditions and the following disclaimer must be reproduced in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Video: ~~~~~~ https://youtu.be/lseR6ZguBNY Use Q and W keys to view quantised image and dithered image respectively Use Left mouse button to pan, and mouse wheel to zoom to cursor Links ~~~~~ YouTube: https://www.youtube.com/javidx9 https://www.youtube.com/javidx9extra Discord: https://discord.gg/WhwHUMV Twitter: https://www.twitter.com/javidx9 Twitch: https://www.twitch.tv/javidx9 GitHub: https://www.github.com/onelonecoder Homepage: https://www.onelonecoder.com Author ~~~~~~ David Barr, aka javidx9, ŠOneLoneCoder 2019, 2020, 2021, 2022 */ // Using olc::PixelGameEngine for input and visualisation #define OLC_PGE_APPLICATION #include "olcPixelGameEngine.h" // Using a transformed view to handle pan and zoom #define OLC_PGEX_TRANSFORMEDVIEW #include "olcPGEX_TransformedView.h" //#include // Override base class with your custom functionality class Dithering : public olc::PixelGameEngine { public: Dithering() { sAppName = "Floyd Steinberg Dithering"; } olc::TransformedView tv; std::unique_ptr m_pImage; std::unique_ptr m_pQuantised; std::unique_ptr m_pDithered; public: // Called once at start of application bool OnUserCreate() override { // Prepare Pan & Zoom tv.Initialise({ ScreenWidth(), ScreenHeight() }); // Load Test Image m_pImage = std::make_unique("./assets/Flower_640x480.png"); // Create two more images with the same dimensions m_pQuantised = std::make_unique(m_pImage->width, m_pImage->height); m_pDithered = std::make_unique(m_pImage->width, m_pImage->height); // These lambda functions output a new olc::Pixel based on // the pixel it is given auto Convert_RGB_To_Greyscale = [](const olc::Pixel in) { uint8_t greyscale = uint8_t(0.2162f * float(in.r) + 0.7152f * float(in.g) + 0.0722f * float(in.b)); return olc::Pixel(greyscale, greyscale, greyscale); }; // Quantising functions auto Quantise_Greyscale_1Bit = [](const olc::Pixel in) { return in.r < 128 ? olc::BLACK : olc::WHITE; }; auto Quantise_Greyscale_NBit = [](const olc::Pixel in) { constexpr int nBits = 2; constexpr float fLevels = (1 << nBits) - 1; uint8_t c = uint8_t(std::clamp(std::round(float(in.r) / 255.0f * fLevels) / fLevels * 255.0f, 0.0f, 255.0f)); return olc::Pixel(c, c, c); }; auto Quantise_RGB_NBit = [](const olc::Pixel in) { constexpr int nBits = 2; constexpr float fLevels = (1 << nBits) - 1; uint8_t cr = uint8_t(std::clamp(std::round(float(in.r) / 255.0f * fLevels) / fLevels * 255.0f, 0.0f, 255.0f)); uint8_t cb = uint8_t(std::clamp(std::round(float(in.g) / 255.0f * fLevels) / fLevels * 255.0f, 0.0f, 255.0f)); uint8_t cg = uint8_t(std::clamp(std::round(float(in.b) / 255.0f * fLevels) / fLevels * 255.0f, 0.0f, 255.0f)); return olc::Pixel(cr, cb, cg); }; auto Quantise_RGB_CustomPalette = [](const olc::Pixel in) { std::array nShades = { olc::BLACK, olc::WHITE, olc::YELLOW, olc::MAGENTA, olc::CYAN }; float fClosest = INFINITY; olc::Pixel pClosest; for (const auto& c : nShades) { float fDistance = float( std::sqrt( std::pow(float(c.r) - float(in.r), 2) + std::pow(float(c.g) - float(in.g), 2) + std::pow(float(c.b) - float(in.b), 2))); if (fDistance < fClosest) { fClosest = fDistance; pClosest = c; } } return pClosest; }; // We don't need greyscale for the final demonstration, which uses // RGB, but I've left this here as reference //std::transform( // m_pImage->pColData.begin(), // m_pImage->pColData.end(), // m_pImage->pColData.begin(), Convert_RGB_To_Greyscale); // Quantise The Image std::transform( m_pImage->pColData.begin(), m_pImage->pColData.end(), m_pQuantised->pColData.begin(), Quantise_RGB_NBit); // Perform Dither Dither_FloydSteinberg(m_pImage.get(), m_pDithered.get(), Quantise_RGB_NBit); return true; } void Dither_FloydSteinberg(const olc::Sprite* pSource, olc::Sprite* pDest, std::function funcQuantise) { // The destination image is primed with the source image as the pixel // values become altered as the algorithm executes std::copy(pSource->pColData.begin(), pSource->pColData.end(), pDest->pColData.begin()); // Iterate through each pixel from top left to bottom right, compare the pixel // with that on the "allowed" list, and distribute that error to neighbours // not yet computed olc::vi2d vPixel; for (vPixel.y = 0; vPixel.y < pSource->height; vPixel.y++) { for (vPixel.x = 0; vPixel.x < pSource->width; vPixel.x++) { // Grap and get nearest pixel equivalent from our allowed // palette olc::Pixel op = pDest->GetPixel(vPixel); olc::Pixel qp = funcQuantise(op); // olc::Pixels are "inconveniently" clamped to sensible ranges using an unsigned type... // ...which means they cant be negative. This hampers us a tad here, // so will resort to manual alteration using a signed type int32_t error[3] = { op.r - qp.r, op.g - qp.g, op.b - qp.b }; // Set destination pixel with nearest match from quantisation function pDest->SetPixel(vPixel, qp); // Distribute Error - Using a little utility lambda to keep the messy code // all in one place. It's important to allow pixels to temporarily become // negative in order to distribute the error to the neighbours in both // directions... value directions that is, not spatial! auto UpdatePixel = [&vPixel, &pDest, &error](const olc::vi2d& vOffset, const float fErrorBias) { olc::Pixel p = pDest->GetPixel(vPixel + vOffset); int32_t k[3] = { p.r, p.g, p.b }; k[0] += int32_t(float(error[0]) * fErrorBias); k[1] += int32_t(float(error[1]) * fErrorBias); k[2] += int32_t(float(error[2]) * fErrorBias); pDest->SetPixel(vPixel + vOffset, olc::Pixel(std::clamp(k[0], 0, 255), std::clamp(k[1], 0, 255), std::clamp(k[2], 0, 255))); }; UpdatePixel({ +1, 0 }, 7.0f / 16.0f); UpdatePixel({ -1, +1 }, 3.0f / 16.0f); UpdatePixel({ 0, +1 }, 5.0f / 16.0f); UpdatePixel({ +1, +1 }, 1.0f / 16.0f); } } } // Called every frame bool OnUserUpdate(float fElapsedTime) override { // Handle Pan & Zoom using defaults middle mouse button tv.HandlePanAndZoom(0); // Erase previous frame Clear(olc::BLACK); // Draw Source Image if (GetKey(olc::Key::Q).bHeld) { tv.DrawSprite({ 0,0 }, m_pQuantised.get()); } else if (GetKey(olc::Key::W).bHeld) { tv.DrawSprite({ 0,0 }, m_pDithered.get()); } else { tv.DrawSprite({ 0,0 }, m_pImage.get()); } return true; } }; int main() { Dithering demo; if (demo.Construct(1280, 720, 1, 1)) demo.Start(); return 0; }