/* olcPGEX_Graphics2D.h +-------------------------------------------------------------+ | OneLoneCoder Pixel Game Engine Extension | | Advanced 2D Rendering - v0.3 | +-------------------------------------------------------------+ What is this? ~~~~~~~~~~~~~ This is an extension to the olcPixelGameEngine, which provides advanced olc::Sprite manipulation and drawing routines. To use it, simply include this header file. License (OLC-3) ~~~~~~~~~~~~~~~ Copyright 2018 OneLoneCoder.com Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions or derivations of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions or derivative works in binary form must reproduce the above copyright notice. This list of conditions and the following disclaimer must be reproduced in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Links ~~~~~ YouTube: https://www.youtube.com/javidx9 Discord: https://discord.gg/WhwHUMV Twitter: https://www.twitter.com/javidx9 Twitch: https://www.twitch.tv/javidx9 GitHub: https://www.github.com/onelonecoder Homepage: https://www.onelonecoder.com Author ~~~~~~ David Barr, aka javidx9, ŠOneLoneCoder 2018 */ /* Matrices stored as [Column][Row] (i.e. x, y) |C0R0 C1R0 C2R0| | x | | x'| |C0R1 C1R1 C2R1| * | y | = | y'| |C0R2 C1R2 C2R2| |1.0| | - | */ #ifndef OLC_PGEX_GFX2D #define OLC_PGEX_GFX2D #include #undef min #undef max namespace olc { // Container class for Advanced 2D Drawing functions class GFX2D : public olc::PGEX { // A representation of an affine transform, used to rotate, scale, offset & shear space public: class Transform2D { public: inline Transform2D(); public: // Set this transformation to unity inline void Reset(); // Append a rotation of fTheta radians to this transform inline void Rotate(float fTheta); // Append a translation (ox, oy) to this transform inline void Translate(float ox, float oy); // Append a scaling operation (sx, sy) to this transform inline void Scale(float sx, float sy); // Append a shear operation (sx, sy) to this transform inline void Shear(float sx, float sy); // Calculate the Forward Transformation of the coordinate (in_x, in_y) -> (out_x, out_y) inline void Forward(float in_x, float in_y, float &out_x, float &out_y); // Calculate the Inverse Transformation of the coordinate (in_x, in_y) -> (out_x, out_y) inline void Backward(float in_x, float in_y, float &out_x, float &out_y); // Regenerate the Inverse Transformation inline void Invert(); private: inline void Multiply(); float matrix[4][3][3]; int nTargetMatrix; int nSourceMatrix; bool bDirty; }; public: // Draws a sprite with the transform applied inline static void DrawSprite(olc::Sprite *sprite, olc::GFX2D::Transform2D &transform); }; } namespace olc { void GFX2D::DrawSprite(olc::Sprite *sprite, olc::GFX2D::Transform2D &transform) { if (sprite == nullptr) return; // Work out bounding rectangle of sprite float ex, ey; float sx, sy; float px, py; transform.Forward(0.0f, 0.0f, sx, sy); px = sx; py = sy; sx = std::min(sx, px); sy = std::min(sy, py); ex = std::max(ex, px); ey = std::max(ey, py); transform.Forward((float)sprite->width, (float)sprite->height, px, py); sx = std::min(sx, px); sy = std::min(sy, py); ex = std::max(ex, px); ey = std::max(ey, py); transform.Forward(0.0f, (float)sprite->height, px, py); sx = std::min(sx, px); sy = std::min(sy, py); ex = std::max(ex, px); ey = std::max(ey, py); transform.Forward((float)sprite->width, 0.0f, px, py); sx = std::min(sx, px); sy = std::min(sy, py); ex = std::max(ex, px); ey = std::max(ey, py); // Perform inversion of transform if required transform.Invert(); if (ex < sx) std::swap(ex, sx); if (ey < sy) std::swap(ey, sy); // Iterate through render space, and sample Sprite from suitable texel location for (float i = sx; i < ex; i++) { for (float j = sy; j < ey; j++) { float ox, oy; transform.Backward(i, j, ox, oy); pge->Draw((int32_t)i, (int32_t)j, sprite->GetPixel((int32_t)(ox+0.5f), (int32_t)(oy+0.5f))); } } } olc::GFX2D::Transform2D::Transform2D() { Reset(); } void olc::GFX2D::Transform2D::Reset() { nTargetMatrix = 0; nSourceMatrix = 1; bDirty = true; // Columns Then Rows // Matrices 0 & 1 are used as swaps in Transform accumulation matrix[0][0][0] = 1.0f; matrix[0][1][0] = 0.0f; matrix[0][2][0] = 0.0f; matrix[0][0][1] = 0.0f; matrix[0][1][1] = 1.0f; matrix[0][2][1] = 0.0f; matrix[0][0][2] = 0.0f; matrix[0][1][2] = 0.0f; matrix[0][2][2] = 1.0f; matrix[1][0][0] = 1.0f; matrix[1][1][0] = 0.0f; matrix[1][2][0] = 0.0f; matrix[1][0][1] = 0.0f; matrix[1][1][1] = 1.0f; matrix[1][2][1] = 0.0f; matrix[1][0][2] = 0.0f; matrix[1][1][2] = 0.0f; matrix[1][2][2] = 1.0f; // Matrix 2 is a cache matrix to hold the immediate transform operation // Matrix 3 is a cache matrix to hold the inverted transform } void olc::GFX2D::Transform2D::Multiply() { for (int c = 0; c < 3; c++) { for (int r = 0; r < 3; r++) { matrix[nTargetMatrix][c][r] = matrix[2][0][r] * matrix[nSourceMatrix][c][0] + matrix[2][1][r] * matrix[nSourceMatrix][c][1] + matrix[2][2][r] * matrix[nSourceMatrix][c][2]; } } std::swap(nTargetMatrix, nSourceMatrix); bDirty = true; // Any transform multiply dirties the inversion } void olc::GFX2D::Transform2D::Rotate(float fTheta) { // Construct Rotation Matrix matrix[2][0][0] = cosf(fTheta); matrix[2][1][0] = sinf(fTheta); matrix[2][2][0] = 0.0f; matrix[2][0][1] = -sinf(fTheta); matrix[2][1][1] = cosf(fTheta); matrix[2][2][1] = 0.0f; matrix[2][0][2] = 0.0f; matrix[2][1][2] = 0.0f; matrix[2][2][2] = 1.0f; Multiply(); } void olc::GFX2D::Transform2D::Scale(float sx, float sy) { // Construct Scale Matrix matrix[2][0][0] = sx; matrix[2][1][0] = 0.0f; matrix[2][2][0] = 0.0f; matrix[2][0][1] = 0.0f; matrix[2][1][1] = sy; matrix[2][2][1] = 0.0f; matrix[2][0][2] = 0.0f; matrix[2][1][2] = 0.0f; matrix[2][2][2] = 1.0f; Multiply(); } void olc::GFX2D::Transform2D::Shear(float sx, float sy) { // Construct Shear Matrix matrix[2][0][0] = 1.0f; matrix[2][1][0] = sx; matrix[2][2][0] = 0.0f; matrix[2][0][1] = sy; matrix[2][1][1] = 1.0f; matrix[2][2][1] = 0.0f; matrix[2][0][2] = 0.0f; matrix[2][1][2] = 0.0f; matrix[2][2][2] = 1.0f; Multiply(); } void olc::GFX2D::Transform2D::Translate(float ox, float oy) { // Construct Translate Matrix matrix[2][0][0] = 1.0f; matrix[2][1][0] = 0.0f; matrix[2][2][0] = ox; matrix[2][0][1] = 0.0f; matrix[2][1][1] = 1.0f; matrix[2][2][1] = oy; matrix[2][0][2] = 0.0f; matrix[2][1][2] = 0.0f; matrix[2][2][2] = 1.0f; Multiply(); } void olc::GFX2D::Transform2D::Forward(float in_x, float in_y, float &out_x, float &out_y) { out_x = in_x * matrix[nSourceMatrix][0][0] + in_y * matrix[nSourceMatrix][1][0] + matrix[nSourceMatrix][2][0]; out_y = in_x * matrix[nSourceMatrix][0][1] + in_y * matrix[nSourceMatrix][1][1] + matrix[nSourceMatrix][2][1]; } void olc::GFX2D::Transform2D::Backward(float in_x, float in_y, float &out_x, float &out_y) { out_x = in_x * matrix[3][0][0] + in_y * matrix[3][1][0] + matrix[3][2][0]; out_y = in_x * matrix[3][0][1] + in_y * matrix[3][1][1] + matrix[3][2][1]; } void olc::GFX2D::Transform2D::Invert() { if (bDirty) // Obviously costly so only do if needed { float det = matrix[nSourceMatrix][0][0] * (matrix[nSourceMatrix][1][1] * matrix[nSourceMatrix][2][2] - matrix[nSourceMatrix][1][2] * matrix[nSourceMatrix][2][1]) - matrix[nSourceMatrix][1][0] * (matrix[nSourceMatrix][0][1] * matrix[nSourceMatrix][2][2] - matrix[nSourceMatrix][2][1] * matrix[nSourceMatrix][0][2]) + matrix[nSourceMatrix][2][0] * (matrix[nSourceMatrix][0][1] * matrix[nSourceMatrix][1][2] - matrix[nSourceMatrix][1][1] * matrix[nSourceMatrix][0][2]); float idet = 1.0f / det; matrix[3][0][0] = (matrix[nSourceMatrix][1][1] * matrix[nSourceMatrix][2][2] - matrix[nSourceMatrix][1][2] * matrix[nSourceMatrix][2][1]) * idet; matrix[3][1][0] = (matrix[nSourceMatrix][2][0] * matrix[nSourceMatrix][1][2] - matrix[nSourceMatrix][1][0] * matrix[nSourceMatrix][2][2]) * idet; matrix[3][2][0] = (matrix[nSourceMatrix][1][0] * matrix[nSourceMatrix][2][1] - matrix[nSourceMatrix][2][0] * matrix[nSourceMatrix][1][1]) * idet; matrix[3][0][1] = (matrix[nSourceMatrix][2][1] * matrix[nSourceMatrix][0][2] - matrix[nSourceMatrix][0][1] * matrix[nSourceMatrix][2][2]) * idet; matrix[3][1][1] = (matrix[nSourceMatrix][0][0] * matrix[nSourceMatrix][2][2] - matrix[nSourceMatrix][2][0] * matrix[nSourceMatrix][0][2]) * idet; matrix[3][2][1] = (matrix[nSourceMatrix][0][1] * matrix[nSourceMatrix][2][0] - matrix[nSourceMatrix][0][0] * matrix[nSourceMatrix][2][1]) * idet; matrix[3][0][2] = (matrix[nSourceMatrix][0][1] * matrix[nSourceMatrix][1][2] - matrix[nSourceMatrix][0][2] * matrix[nSourceMatrix][1][1]) * idet; matrix[3][1][2] = (matrix[nSourceMatrix][0][2] * matrix[nSourceMatrix][1][0] - matrix[nSourceMatrix][0][0] * matrix[nSourceMatrix][1][2]) * idet; matrix[3][2][2] = (matrix[nSourceMatrix][0][0] * matrix[nSourceMatrix][1][1] - matrix[nSourceMatrix][0][1] * matrix[nSourceMatrix][1][0]) * idet; bDirty = false; } } } #endif