/* OneLoneCoder.com - Programming Balls! #2 Circle Vs Edge Collisions "...totally overkill for pong..." - @Javidx9 Background ~~~~~~~~~~ Collision detection engines can get quite complicated. This program shows the interactions between circular objects of different sizes and masses. Use Left mouse button to select and drag a ball to examin static collisions, and use Right mouse button to apply velocity to the balls as if using a pool/snooker/billiards cue. License (OLC-3) ~~~~~~~~~~~~~~~ Copyright 2018 OneLoneCoder.com Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions or derivations of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions or derivative works in binary form must reproduce the above copyright notice. This list of conditions and the following disclaimer must be reproduced in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Links ~~~~~ YouTube: https://www.youtube.com/javidx9 Discord: https://discord.gg/WhwHUMV Twitter: https://www.twitter.com/javidx9 Twitch: https://www.twitch.tv/javidx9 GitHub: https://www.github.com/onelonecoder Homepage: https://www.onelonecoder.com Relevant Videos ~~~~~~~~~~~~~~~ Part #1 https://youtu.be/LPzyNOHY3A4 Part #2 https://youtu.be/ebq7L2Wtbl4 Author ~~~~~~ David Barr, aka javidx9, ©OneLoneCoder 2018 */ #include #include #include using namespace std; #define OLC_PGE_APPLICATION #include "olcPixelGameEngine.h" struct sBall { float px, py; float vx, vy; float ax, ay; float ox, oy; float radius; float mass; float friction; int score; int id; float fSimTimeRemaining; olc::Pixel col; }; struct sLineSegment { float sx, sy; float ex, ey; float radius; }; class CirclePhysics : public olc::PixelGameEngine { public: CirclePhysics() { sAppName = "Circles V Edges"; } private: vector vecBalls; vector vecLines; vector> modelCircle; sBall* pSelectedBall = nullptr; olc::Sprite *spriteBalls = nullptr; sLineSegment* pSelectedLine = nullptr; bool bSelectedLineStart = false; void AddBall(float x, float y, float r = 5.0f, int s = 0) { sBall b; b.px = x; b.py = y; b.vx = 0; b.vy = 0; b.ax = 0; b.ay = 0; b.ox = 0; b.oy = 0; b.radius = r; b.mass = r * 10.0f; b.friction = 0.0f; b.score = s; b.fSimTimeRemaining = 0.0f; b.id = vecBalls.size(); b.col = olc::Pixel(rand() % 200 + 55, rand() % 200 + 55, rand() % 200 + 55); vecBalls.emplace_back(b); } olc::Sprite spr; public: bool OnUserCreate() { float fBallRadius = 4.0f; for (int i = 0; i <100; i++) AddBall(((float)rand()/(float)RAND_MAX) * ScreenWidth(), ((float)rand() / (float)RAND_MAX) * ScreenHeight(), fBallRadius); AddBall(28.0f, 33.0, fBallRadius * 3); AddBall(28.0f, 35.0, fBallRadius * 2); float fLineRadius = 4.0f; vecLines.push_back({ 12.0f, 4.0f, 64.0f, 4.0f, fLineRadius }); vecLines.push_back({ 76.0f, 4.0f, 132.0f, 4.0f, fLineRadius }); vecLines.push_back({ 12.0f, 68.0f, 64.0f, 68.0f, fLineRadius }); vecLines.push_back({ 76.0f, 68.0f, 132.0f, 68.0f, fLineRadius }); vecLines.push_back({ 4.0f, 12.0f, 4.0f, 60.0f, fLineRadius }); vecLines.push_back({ 140.0f, 12.0f, 140.0f, 60.0f, fLineRadius }); return true; } bool OnUserUpdate(float fElapsedTime) { auto DoCirclesOverlap = [](float x1, float y1, float r1, float x2, float y2, float r2) { return fabs((x1 - x2)*(x1 - x2) + (y1 - y2)*(y1 - y2)) <= ((r1 + r2) * (r1 + r2)); }; auto IsPointInCircle = [](float x1, float y1, float r1, float px, float py) { return fabs((x1 - px)*(x1 - px) + (y1 - py)*(y1 - py)) < (r1 * r1); }; if (GetMouse(0).bPressed) { // Check for selected ball pSelectedBall = nullptr; for (auto &ball : vecBalls) { if (IsPointInCircle(ball.px, ball.py, ball.radius, GetMouseX(), GetMouseY())) { pSelectedBall = &ball; break; } } // Check for selected line segment end pSelectedLine = nullptr; for (auto &line : vecLines) { if (IsPointInCircle(line.sx, line.sy, line.radius, GetMouseX(), GetMouseY())) { pSelectedLine = &line; bSelectedLineStart = true; break; } if (IsPointInCircle(line.ex, line.ey, line.radius, GetMouseX(), GetMouseY())) { pSelectedLine = &line; bSelectedLineStart = false; break; } } } if (GetMouse(0).bHeld) { if (pSelectedLine != nullptr) { if (bSelectedLineStart) { pSelectedLine->sx = GetMouseX(); pSelectedLine->sy = GetMouseY(); } else { pSelectedLine->ex = GetMouseX(); pSelectedLine->ey = GetMouseY(); } } } if (GetMouse(0).bReleased) { if (pSelectedBall != nullptr) { // Apply velocity pSelectedBall->vx = 5.0f * ((pSelectedBall->px) - GetMouseX()); pSelectedBall->vy = 5.0f * ((pSelectedBall->py) - GetMouseY()); } pSelectedBall = nullptr; pSelectedLine = nullptr; } if (GetMouse(1).bHeld) { for (auto &ball : vecBalls) { ball.vx += (GetMouseX() - ball.px) * 0.01f; ball.vy += (GetMouseY() - ball.py) * 0.01f; } } vector> vecCollidingPairs; vector vecFakeBalls; // Threshold indicating stability of object float fStable = 0.005f; // Multiple simulation updates with small time steps permit more accurate physics // and realistic results at the expense of CPU time of course int nSimulationUpdates = 4; // Multiple collision trees require more steps to resolve. Normally we would // continue simulation until the object has no simulation time left for this // epoch, however this is risky as the system may never find stability, so we // can clamp it here int nMaxSimulationSteps = 15; // Break up the frame elapsed time into smaller deltas for each simulation update float fSimElapsedTime = fElapsedTime / (float)nSimulationUpdates; // Main simulation loop for (int i = 0; i < nSimulationUpdates; i++) { // Set all balls time to maximum for this epoch for (auto &ball : vecBalls) ball.fSimTimeRemaining = fSimElapsedTime; // Erode simulation time on a per objec tbasis, depending upon what happens // to it during its journey through this epoch for (int j = 0; j < nMaxSimulationSteps; j++) { // Update Ball Positions for (auto &ball : vecBalls) { if (ball.fSimTimeRemaining > 0.0f) { ball.ox = ball.px; // Store original position this epoch ball.oy = ball.py; ball.ax = -ball.vx * 0.8f; // Apply drag and gravity ball.ay = -ball.vy * 0.8f + 100.0f; ball.vx += ball.ax * ball.fSimTimeRemaining; // Update Velocity ball.vy += ball.ay * ball.fSimTimeRemaining; ball.px += ball.vx * ball.fSimTimeRemaining; // Update position ball.py += ball.vy * ball.fSimTimeRemaining; // Crudely wrap balls to screen - note this cause issues when collisions occur on screen boundaries if (ball.px < 0) ball.px += (float)ScreenWidth(); if (ball.px >= ScreenWidth()) ball.px -= (float)ScreenWidth(); if (ball.py < 0) ball.py += (float)ScreenHeight(); if (ball.py >= ScreenHeight()) ball.py -= (float)ScreenHeight(); // Stop ball when velocity is neglible if (fabs(ball.vx*ball.vx + ball.vy*ball.vy) < fStable) { ball.vx = 0; ball.vy = 0; } } } // Work out static collisions with walls and displace balls so no overlaps for (auto &ball : vecBalls) { float fDeltaTime = ball.fSimTimeRemaining; // Against Edges for (auto &edge : vecLines) { // Check that line formed by velocity vector, intersects with line segment float fLineX1 = edge.ex - edge.sx; float fLineY1 = edge.ey - edge.sy; float fLineX2 = ball.px - edge.sx; float fLineY2 = ball.py - edge.sy; float fEdgeLength = fLineX1 * fLineX1 + fLineY1 * fLineY1; // This is nifty - It uses the DP of the line segment vs the line to the object, to work out // how much of the segment is in the "shadow" of the object vector. The min and max clamp // this to lie between 0 and the line segment length, which is then normalised. We can // use this to calculate the closest point on the line segment float t = std::max(0.0f, std::min(fEdgeLength, (fLineX1 * fLineX2 + fLineY1 * fLineY2))) / fEdgeLength; // Which we do here float fClosestPointX = edge.sx + t * fLineX1; float fClosestPointY = edge.sy + t * fLineY1; // And once we know the closest point, we can check if the ball has collided with the segment in the // same way we check if two balls have collided float fDistance = sqrtf((ball.px - fClosestPointX)*(ball.px - fClosestPointX) + (ball.py - fClosestPointY)*(ball.py - fClosestPointY)); if (fDistance <= (ball.radius + edge.radius)) { // Collision has occurred - treat collision point as a ball that cannot move. To make this // compatible with the dynamic resolution code below, we add a fake ball with an infinite mass // so it behaves like a solid object when the momentum calculations are performed sBall *fakeball = new sBall(); fakeball->radius = edge.radius; fakeball->mass = ball.mass * 0.8f; fakeball->px = fClosestPointX; fakeball->py = fClosestPointY; fakeball->vx = -ball.vx; // We will use these later to allow the lines to impart energy into ball fakeball->vy = -ball.vy; // if the lines are moving, i.e. like pinball flippers // Store Fake Ball vecFakeBalls.push_back(fakeball); // Add collision to vector of collisions for dynamic resolution vecCollidingPairs.push_back({ &ball, fakeball }); // Calculate displacement required float fOverlap = 1.0f * (fDistance - ball.radius - fakeball->radius); // Displace Current Ball away from collision ball.px -= fOverlap * (ball.px - fakeball->px) / fDistance; ball.py -= fOverlap * (ball.py - fakeball->py) / fDistance; } } // Against other balls for (auto &target : vecBalls) { if (ball.id != target.id) // Do not check against self { if (DoCirclesOverlap(ball.px, ball.py, ball.radius, target.px, target.py, target.radius)) { // Collision has occured vecCollidingPairs.push_back({ &ball, &target }); // Distance between ball centers float fDistance = sqrtf((ball.px - target.px)*(ball.px - target.px) + (ball.py - target.py)*(ball.py - target.py)); // Calculate displacement required float fOverlap = 0.5f * (fDistance - ball.radius - target.radius); // Displace Current Ball away from collision ball.px -= fOverlap * (ball.px - target.px) / fDistance; ball.py -= fOverlap * (ball.py - target.py) / fDistance; // Displace Target Ball away from collision - Note, this should affect the timing of the target ball // and it does, but this is absorbed by the target ball calculating its own time delta later on target.px += fOverlap * (ball.px - target.px) / fDistance; target.py += fOverlap * (ball.py - target.py) / fDistance; } } } // Time displacement - we knew the velocity of the ball, so we can estimate the distance it should have covered // however due to collisions it could not do the full distance, so we look at the actual distance to the collision // point and calculate how much time that journey would have taken using the speed of the object. Therefore // we can now work out how much time remains in that timestep. float fIntendedSpeed = sqrtf(ball.vx * ball.vx + ball.vy * ball.vy); float fIntendedDistance = fIntendedSpeed * ball.fSimTimeRemaining; float fActualDistance = sqrtf((ball.px - ball.ox)*(ball.px - ball.ox) + (ball.py - ball.oy)*(ball.py - ball.oy)); float fActualTime = fActualDistance / fIntendedSpeed; // After static resolution, there may be some time still left for this epoch, so allow simulation to continue ball.fSimTimeRemaining = ball.fSimTimeRemaining - fActualTime; } // Now work out dynamic collisions float fEfficiency = 1.00f; for (auto c : vecCollidingPairs) { sBall *b1 = c.first, *b2 = c.second; // Distance between balls float fDistance = sqrtf((b1->px - b2->px)*(b1->px - b2->px) + (b1->py - b2->py)*(b1->py - b2->py)); // Normal float nx = (b2->px - b1->px) / fDistance; float ny = (b2->py - b1->py) / fDistance; // Tangent float tx = -ny; float ty = nx; // Dot Product Tangent float dpTan1 = b1->vx * tx + b1->vy * ty; float dpTan2 = b2->vx * tx + b2->vy * ty; // Dot Product Normal float dpNorm1 = b1->vx * nx + b1->vy * ny; float dpNorm2 = b2->vx * nx + b2->vy * ny; // Conservation of momentum in 1D float m1 = fEfficiency * (dpNorm1 * (b1->mass - b2->mass) + 2.0f * b2->mass * dpNorm2) / (b1->mass + b2->mass); float m2 = fEfficiency * (dpNorm2 * (b2->mass - b1->mass) + 2.0f * b1->mass * dpNorm1) / (b1->mass + b2->mass); // Update ball velocities b1->vx = tx * dpTan1 + nx * m1; b1->vy = ty * dpTan1 + ny * m1; b2->vx = tx * dpTan2 + nx * m2; b2->vy = ty * dpTan2 + ny * m2; } // Remove collisions vecCollidingPairs.clear(); // Remove fake balls for (auto &b : vecFakeBalls) delete b; vecFakeBalls.clear(); } } // Clear Screen FillRect(0, 0, ScreenWidth(), ScreenHeight(), olc::Pixel(0, 0, 0)); // Draw Lines for (auto line : vecLines) { FillCircle(line.sx, line.sy, line.radius, olc::Pixel(255,255,255)); FillCircle(line.ex, line.ey, line.radius, olc::Pixel(128, 128, 128)); float nx = -(line.ey - line.sy); float ny = (line.ex - line.sx); float d = sqrt(nx*nx + ny * ny); nx /= d; ny /= d; DrawLine((line.sx + nx * line.radius), (line.sy + ny * line.radius), (line.ex + nx * line.radius), (line.ey + ny * line.radius), olc::Pixel(255, 255, 255)); DrawLine((line.sx - nx * line.radius), (line.sy - ny * line.radius), (line.ex - nx * line.radius), (line.ey - ny * line.radius), olc::Pixel(255, 255, 255)); } // Draw Balls for (auto ball : vecBalls) { FillCircle(ball.px, ball.py, ball.radius, ball.col); } // Draw Cue if (pSelectedBall != nullptr) DrawLine(pSelectedBall->px, pSelectedBall->py, GetMouseX(), GetMouseY(), olc::Pixel(0, 0, 255)); return true; } }; int main() { CirclePhysics game; if (game.Construct(320, 240, 4, 4)) game.Start(); else wcout << L"Could not construct console" << endl; return 0; };