Upstream for PGE updates.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
olcPixelGameEngine/OneLoneCoder_PGE_ShadowCast...

512 lines
31 KiB

<EFBFBD><EFBFBD>/*
OneLoneCoder_PGE_ShadowCasting2D.cpp
What is this?
~~~~~~~~~~~~~
This is an implementation of two algorithms that work together
to produuce a "line-of-sight" or "shadow casting" effect depending
upon your perspective. To use it compile with olcPixelGameEngine.h,
place/remove blocks with left click and hold down right mouse button
to illuminate the scene from the mouse cursor.
The first algorithm converts a tile map into a set of geometric
primitives whcih are more conveninet to use in geometric programs
such as this. The second algorithm casts rays to create a triangle
fan that represents the visible area form the source.
Thanks to these resources for ideas
https://stackoverflow.com/questions/563198/how-do-you-detect-where-two-line-segments-intersect
https://www.redblobgames.com/articles/visibility/
https://ncase.me/sight-and-light/
License (OLC-3)
~~~~~~~~~~~~~~~
Copyright 2018 OneLoneCoder.com
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions or derivations of source code must retain the above
copyright notice, this list of conditions and the following disclaimer.
2. Redistributions or derivative works in binary form must reproduce
the above copyright notice. This list of conditions and the following
disclaimer must be reproduced in the documentation and/or other
materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Links
~~~~~
YouTube: https://www.youtube.com/javidx9
Discord: https://discord.gg/WhwHUMV
Twitter: https://www.twitter.com/javidx9
Twitch: https://www.twitch.tv/javidx9
GitHub: https://www.github.com/onelonecoder
Homepage: https://www.onelonecoder.com
Relevant Videos
~~~~~~~~~~~~~~~
https://youtu.be/kRH6oJLFYxY Introducing olcPixelGameEngine
--> https://youtu.be/fc3nnG2CG8U Video about this very code!
Author
~~~~~~
David Barr, aka javidx9, <EFBFBD>OneLoneCoder 2018
*/
#include <iostream>
#include <algorithm>
using namespace std;
#define OLC_PGE_APPLICATION
#include "olcPixelGameEngine.h"
struct sEdge
{
float sx, sy; // Start coordinate
float ex, ey; // End coordinate
};
struct sCell
{
int edge_id[4];
bool edge_exist[4];
bool exist = false;
};
#define NORTH 0
#define SOUTH 1
#define EAST 2
#define WEST 3
class ShadowCasting2D : public olc::PixelGameEngine
{
public:
ShadowCasting2D()
{
sAppName = "ShadowCasting2D";
}
private:
sCell* world;
int nWorldWidth = 40;
int nWorldHeight = 30;
olc::Sprite *sprLightCast;
olc::Sprite *buffLightRay;
olc::Sprite *buffLightTex;
vector<sEdge> vecEdges;
// angle x y
vector<tuple<float, float, float>> vecVisibilityPolygonPoints;
void ConvertTileMapToPolyMap(int sx, int sy, int w, int h, float fBlockWidth, int pitch)
{
// Clear "PolyMap"
vecEdges.clear();
for (int x = 0; x < w; x++)
for (int y = 0; y < h; y++)
for (int j = 0; j < 4; j++)
{
world[(y + sy) * pitch + (x + sx)].edge_exist[j] = false;
world[(y + sy) * pitch + (x + sx)].edge_id[j] = 0;
}
// Iterate through region from top left to bottom right
for (int x = 1; x < w - 1; x++)
for (int y = 1; y < h - 1; y++)
{
// Create some convenient indices
int i = (y + sy) * pitch + (x + sx); // This
int n = (y + sy - 1) * pitch + (x + sx); // Northern Neighbour
int s = (y + sy + 1) * pitch + (x + sx); // Southern Neighbour
int w = (y + sy) * pitch + (x + sx - 1); // Western Neighbour
int e = (y + sy) * pitch + (x + sx + 1); // Eastern Neighbour
// If this cell exists, check if it needs edges
if (world[i].exist)
{
// If this cell has no western neighbour, it needs a western edge
if (!world[w].exist)
{
// It can either extend it from its northern neighbour if they have
// one, or It can start a new one.
if (world[n].edge_exist[WEST])
{
// Northern neighbour has a western edge, so grow it downwards
vecEdges[world[n].edge_id[WEST]].ey += fBlockWidth;
world[i].edge_id[WEST] = world[n].edge_id[WEST];
world[i].edge_exist[WEST] = true;
}
else
{
// Northern neighbour does not have one, so create one
sEdge edge;
edge.sx = (sx + x) * fBlockWidth; edge.sy = (sy + y) * fBlockWidth;
edge.ex = edge.sx; edge.ey = edge.sy + fBlockWidth;
// Add edge to Polygon Pool
int edge_id = vecEdges.size();
vecEdges.push_back(edge);
// Update tile information with edge information
world[i].edge_id[WEST] = edge_id;
world[i].edge_exist[WEST] = true;
}
}
// If this cell dont have an eastern neignbour, It needs a eastern edge
if (!world[e].exist)
{
// It can either extend it from its northern neighbour if they have
// one, or It can start a new one.
if (world[n].edge_exist[EAST])
{
// Northern neighbour has one, so grow it downwards
vecEdges[world[n].edge_id[EAST]].ey += fBlockWidth;
world[i].edge_id[EAST] = world[n].edge_id[EAST];
world[i].edge_exist[EAST] = true;
}
else
{
// Northern neighbour does not have one, so create one
sEdge edge;
edge.sx = (sx + x + 1) * fBlockWidth; edge.sy = (sy + y) * fBlockWidth;
edge.ex = edge.sx; edge.ey = edge.sy + fBlockWidth;
// Add edge to Polygon Pool
int edge_id = vecEdges.size();
vecEdges.push_back(edge);
// Update tile information with edge information
world[i].edge_id[EAST] = edge_id;
world[i].edge_exist[EAST] = true;
}
}
// If this cell doesnt have a northern neignbour, It needs a northern edge
if (!world[n].exist)
{
// It can either extend it from its western neighbour if they have
// one, or It can start a new one.
if (world[w].edge_exist[NORTH])
{
// Western neighbour has one, so grow it eastwards
vecEdges[world[w].edge_id[NORTH]].ex += fBlockWidth;
world[i].edge_id[NORTH] = world[w].edge_id[NORTH];
world[i].edge_exist[NORTH] = true;
}
else
{
// Western neighbour does not have one, so create one
sEdge edge;
edge.sx = (sx + x) * fBlockWidth; edge.sy = (sy + y) * fBlockWidth;
edge.ex = edge.sx + fBlockWidth; edge.ey = edge.sy;
// Add edge to Polygon Pool
int edge_id = vecEdges.size();
vecEdges.push_back(edge);
// Update tile information with edge information
world[i].edge_id[NORTH] = edge_id;
world[i].edge_exist[NORTH] = true;
}
}
// If this cell doesnt have a southern neignbour, It needs a southern edge
if (!world[s].exist)
{
// It can either extend it from its western neighbour if they have
// one, or It can start a new one.
if (world[w].edge_exist[SOUTH])
{
// Western neighbour has one, so grow it eastwards
vecEdges[world[w].edge_id[SOUTH]].ex += fBlockWidth;
world[i].edge_id[SOUTH] = world[w].edge_id[SOUTH];
world[i].edge_exist[SOUTH] = true;
}
else
{
// Western neighbour does not have one, so I need to create one
sEdge edge;
edge.sx = (sx + x) * fBlockWidth; edge.sy = (sy + y + 1) * fBlockWidth;
edge.ex = edge.sx + fBlockWidth; edge.ey = edge.sy;
// Add edge to Polygon Pool
int edge_id = vecEdges.size();
vecEdges.push_back(edge);
// Update tile information with edge information
world[i].edge_id[SOUTH] = edge_id;
world[i].edge_exist[SOUTH] = true;
}
}
}
}
}
void CalculateVisibilityPolygon(float ox, float oy, float radius)
{
// Get rid of existing polygon
vecVisibilityPolygonPoints.clear();
// For each edge in PolyMap
for (auto &e1 : vecEdges)
{
// Take the start point, then the end point (we could use a pool of
// non-duplicated points here, it would be more optimal)
for (int i = 0; i < 2; i++)
{
float rdx, rdy;
rdx = (i == 0 ? e1.sx : e1.ex) - ox;
rdy = (i == 0 ? e1.sy : e1.ey) - oy;
float base_ang = atan2f(rdy, rdx);
float ang = 0;
// For each point, cast 3 rays, 1 directly at point
// and 1 a little bit either side
for (int j = 0; j < 3; j++)
{
if (j == 0) ang = base_ang - 0.0001f;
if (j == 1) ang = base_ang;
if (j == 2) ang = base_ang + 0.0001f;
// Create ray along angle for required distance
rdx = radius * cosf(ang);
rdy = radius * sinf(ang);
float min_t1 = INFINITY;
float min_px = 0, min_py = 0, min_ang = 0;
bool bValid = false;
// Check for ray intersection with all edges
for (auto &e2 : vecEdges)
{
// Create line segment vector
float sdx = e2.ex - e2.sx;
float sdy = e2.ey - e2.sy;
if (fabs(sdx - rdx) > 0.0f && fabs(sdy - rdy) > 0.0f)
{
// t2 is normalised distance from line segment start to line segment end of intersect point
float t2 = (rdx * (e2.sy - oy) + (rdy * (ox - e2.sx))) / (sdx * rdy - sdy * rdx);
// t1 is normalised distance from source along ray to ray length of intersect point
float t1 = (e2.sx + sdx * t2 - ox) / rdx;
// If intersect point exists along ray, and along line
// segment then intersect point is valid
if (t1 > 0 && t2 >= 0 && t2 <= 1.0f)
{
// Check if this intersect point is closest to source. If
// it is, then store this point and reject others
if (t1 < min_t1)
{
min_t1 = t1;
min_px = ox + rdx * t1;
min_py = oy + rdy * t1;
min_ang = atan2f(min_py - oy, min_px - ox);
bValid = true;
}
}
}
}
if(bValid)// Add intersection point to visibility polygon perimeter
vecVisibilityPolygonPoints.push_back({ min_ang, min_px, min_py });
}
}
}
// Sort perimeter points by angle from source. This will allow
// us to draw a triangle fan.
sort(
vecVisibilityPolygonPoints.begin(),
vecVisibilityPolygonPoints.end(),
[&](const tuple<float, float, float> &t1, const tuple<float, float, float> &t2)
{
return get<0>(t1) < get<0>(t2);
});
}
public:
bool OnUserCreate() override
{
world = new sCell[nWorldWidth * nWorldHeight];
// Add a boundary to the world
for (int x = 1; x < (nWorldWidth - 1); x++)
{
world[1 * nWorldWidth + x].exist = true;
world[(nWorldHeight - 2) * nWorldWidth + x].exist = true;
}
for (int x = 1; x < (nWorldHeight - 1); x++)
{
world[x * nWorldWidth + 1].exist = true;
world[x * nWorldWidth + (nWorldWidth - 2)].exist = true;
}
sprLightCast = new olc::Sprite("light_cast.png");
// Create some screen-sized off-screen buffers for lighting effect
buffLightTex = new olc::Sprite(ScreenWidth(), ScreenHeight());
buffLightRay = new olc::Sprite(ScreenWidth(), ScreenHeight());
return true;
}
bool OnUserUpdate(float fElapsedTime) override
{
float fBlockWidth = 16.0f;
float fSourceX = GetMouseX();
float fSourceY = GetMouseY();
// Set tile map blocks to on or off
if (GetMouse(0).bReleased)
{
// i = y * width + x
int i = ((int)fSourceY / (int)fBlockWidth) * nWorldWidth + ((int)fSourceX / (int)fBlockWidth);
world[i].exist = !world[i].exist;
}
// Take a region of "TileMap" and convert it to "PolyMap" - This is done
// every frame here, but could be a pre-processing stage depending on
// how your final application interacts with tilemaps
ConvertTileMapToPolyMap(0, 0, 40, 30, fBlockWidth, nWorldWidth);
if (GetMouse(1).bHeld)
{
CalculateVisibilityPolygon(fSourceX, fSourceY, 1000.0f);
}
// Drawing
SetDrawTarget(nullptr);
Clear(olc::BLACK);
int nRaysCast = vecVisibilityPolygonPoints.size();
// Remove duplicate (or simply similar) points from polygon
auto it = unique(
vecVisibilityPolygonPoints.begin(),
vecVisibilityPolygonPoints.end(),
[&](const tuple<float, float, float> &t1, const tuple<float, float, float> &t2)
{
return fabs(get<1>(t1) - get<1>(t2)) < 0.1f && fabs(get<2>(t1) - get<2>(t2)) < 0.1f;
});
vecVisibilityPolygonPoints.resize(distance(vecVisibilityPolygonPoints.begin(), it));
int nRaysCast2 = vecVisibilityPolygonPoints.size();
DrawString(4, 4, "Rays Cast: " + to_string(nRaysCast) + " Rays Drawn: " + to_string(nRaysCast2));
// If drawing rays, set an offscreen texture as our target buffer
if (GetMouse(1).bHeld && vecVisibilityPolygonPoints.size() > 1)
{
// Clear offscreen buffer for sprite
SetDrawTarget(buffLightTex);
Clear(olc::BLACK);
// Draw "Radial Light" sprite to offscreen buffer, centered around
// source location (the mouse coordinates, buffer is 512x512)
DrawSprite(fSourceX - 255, fSourceY - 255, sprLightCast);
// Clear offsecreen buffer for rays
SetDrawTarget(buffLightRay);
Clear(olc::BLANK);
// Draw each triangle in fan
for (int i = 0; i < vecVisibilityPolygonPoints.size() - 1; i++)
{
FillTriangle(
fSourceX,
fSourceY,
get<1>(vecVisibilityPolygonPoints[i]),
get<2>(vecVisibilityPolygonPoints[i]),
get<1>(vecVisibilityPolygonPoints[i + 1]),
get<2>(vecVisibilityPolygonPoints[i + 1]));
}
// Fan will have one open edge, so draw last point of fan to first
FillTriangle(
fSourceX,
fSourceY,
get<1>(vecVisibilityPolygonPoints[vecVisibilityPolygonPoints.size() - 1]),
get<2>(vecVisibilityPolygonPoints[vecVisibilityPolygonPoints.size() - 1]),
get<1>(vecVisibilityPolygonPoints[0]),
get<2>(vecVisibilityPolygonPoints[0]));
// Wherever rays exist in ray sprite, copy over radial light sprite pixels
SetDrawTarget(nullptr);
for (int x = 0; x < ScreenWidth(); x++)
for (int y = 0; y < ScreenHeight(); y++)
if (buffLightRay->GetPixel(x, y).r > 0)
Draw(x, y, buffLightTex->GetPixel(x, y));
}
// Draw Blocks from TileMap
for (int x = 0; x < nWorldWidth; x++)
for (int y = 0; y < nWorldHeight; y++)
{
if (world[y * nWorldWidth + x].exist)
FillRect(x * fBlockWidth, y * fBlockWidth, fBlockWidth, fBlockWidth, olc::BLUE);
}
// Draw Edges from PolyMap
for (auto &e : vecEdges)
{
DrawLine(e.sx, e.sy, e.ex, e.ey);
FillCircle(e.sx, e.sy, 3, olc::RED);
FillCircle(e.ex, e.ey, 3, olc::RED);
}
return true;
}
};
int main()
{
ShadowCasting2D demo;
if (demo.Construct(640, 480, 2, 2))
demo.Start();
}