Upstream for PGE updates.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
olcPixelGameEngine/olcPGEX_Graphics2D.h

313 lines
11 KiB

/*
olcPGEX_Graphics2D.h
+-------------------------------------------------------------+
| OneLoneCoder Pixel Game Engine Extension |
| Advanced 2D Rendering - v0.4 |
+-------------------------------------------------------------+
What is this?
~~~~~~~~~~~~~
This is an extension to the olcPixelGameEngine, which provides
advanced olc::Sprite manipulation and drawing routines. To use
it, simply include this header file.
License (OLC-3)
~~~~~~~~~~~~~~~
Copyright 2018 - 2019 OneLoneCoder.com
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions or derivations of source code must retain the above
copyright notice, this list of conditions and the following disclaimer.
2. Redistributions or derivative works in binary form must reproduce
the above copyright notice. This list of conditions and the following
disclaimer must be reproduced in the documentation and/or other
materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Links
~~~~~
YouTube: https://www.youtube.com/javidx9
Discord: https://discord.gg/WhwHUMV
Twitter: https://www.twitter.com/javidx9
Twitch: https://www.twitch.tv/javidx9
GitHub: https://www.github.com/onelonecoder
Homepage: https://www.onelonecoder.com
Author
~~~~~~
David Barr, aka javidx9, <EFBFBD>OneLoneCoder 2019
*/
/*
Matrices stored as [Column][Row] (i.e. x, y)
|C0R0 C1R0 C2R0| | x | | x'|
|C0R1 C1R1 C2R1| * | y | = | y'|
|C0R2 C1R2 C2R2| |1.0| | - |
*/
#ifndef OLC_PGEX_GFX2D
#define OLC_PGEX_GFX2D
#include <algorithm>
#undef min
#undef max
namespace olc
{
// Container class for Advanced 2D Drawing functions
class GFX2D : public olc::PGEX
{
// A representation of an affine transform, used to rotate, scale, offset & shear space
public:
class Transform2D
{
public:
inline Transform2D();
public:
// Set this transformation to unity
inline void Reset();
// Append a rotation of fTheta radians to this transform
inline void Rotate(float fTheta);
// Append a translation (ox, oy) to this transform
inline void Translate(float ox, float oy);
// Append a scaling operation (sx, sy) to this transform
inline void Scale(float sx, float sy);
// Append a shear operation (sx, sy) to this transform
inline void Shear(float sx, float sy);
inline void Perspective(float ox, float oy);
// Calculate the Forward Transformation of the coordinate (in_x, in_y) -> (out_x, out_y)
inline void Forward(float in_x, float in_y, float &out_x, float &out_y);
// Calculate the Inverse Transformation of the coordinate (in_x, in_y) -> (out_x, out_y)
inline void Backward(float in_x, float in_y, float &out_x, float &out_y);
// Regenerate the Inverse Transformation
inline void Invert();
private:
inline void Multiply();
float matrix[4][3][3];
int nTargetMatrix;
int nSourceMatrix;
bool bDirty;
};
public:
// Draws a sprite with the transform applied
inline static void DrawSprite(olc::Sprite *sprite, olc::GFX2D::Transform2D &transform);
};
}
#ifdef OLC_PGE_GRAPHICS2D
#undef OLC_PGE_GRAPHICS2D
namespace olc
{
void GFX2D::DrawSprite(olc::Sprite *sprite, olc::GFX2D::Transform2D &transform)
{
if (sprite == nullptr)
return;
// Work out bounding rectangle of sprite
float ex, ey;
float sx, sy;
float px, py;
transform.Forward(0.0f, 0.0f, sx, sy);
px = sx; py = sy;
sx = std::min(sx, px); sy = std::min(sy, py);
ex = std::max(ex, px); ey = std::max(ey, py);
transform.Forward((float)sprite->width, (float)sprite->height, px, py);
sx = std::min(sx, px); sy = std::min(sy, py);
ex = std::max(ex, px); ey = std::max(ey, py);
transform.Forward(0.0f, (float)sprite->height, px, py);
sx = std::min(sx, px); sy = std::min(sy, py);
ex = std::max(ex, px); ey = std::max(ey, py);
transform.Forward((float)sprite->width, 0.0f, px, py);
sx = std::min(sx, px); sy = std::min(sy, py);
ex = std::max(ex, px); ey = std::max(ey, py);
// Perform inversion of transform if required
transform.Invert();
if (ex < sx)
std::swap(ex, sx);
if (ey < sy)
std::swap(ey, sy);
// Iterate through render space, and sample Sprite from suitable texel location
for (float i = sx; i < ex; i++)
{
for (float j = sy; j < ey; j++)
{
float ox, oy;
transform.Backward(i, j, ox, oy);
pge->Draw((int32_t)i, (int32_t)j, sprite->GetPixel((int32_t)(ox+0.5f), (int32_t)(oy+0.5f)));
}
}
}
olc::GFX2D::Transform2D::Transform2D()
{
Reset();
}
void olc::GFX2D::Transform2D::Reset()
{
nTargetMatrix = 0;
nSourceMatrix = 1;
bDirty = true;
// Columns Then Rows
// Matrices 0 & 1 are used as swaps in Transform accumulation
matrix[0][0][0] = 1.0f; matrix[0][1][0] = 0.0f; matrix[0][2][0] = 0.0f;
matrix[0][0][1] = 0.0f; matrix[0][1][1] = 1.0f; matrix[0][2][1] = 0.0f;
matrix[0][0][2] = 0.0f; matrix[0][1][2] = 0.0f; matrix[0][2][2] = 1.0f;
matrix[1][0][0] = 1.0f; matrix[1][1][0] = 0.0f; matrix[1][2][0] = 0.0f;
matrix[1][0][1] = 0.0f; matrix[1][1][1] = 1.0f; matrix[1][2][1] = 0.0f;
matrix[1][0][2] = 0.0f; matrix[1][1][2] = 0.0f; matrix[1][2][2] = 1.0f;
// Matrix 2 is a cache matrix to hold the immediate transform operation
// Matrix 3 is a cache matrix to hold the inverted transform
}
void olc::GFX2D::Transform2D::Multiply()
{
for (int c = 0; c < 3; c++)
{
for (int r = 0; r < 3; r++)
{
matrix[nTargetMatrix][c][r] = matrix[2][0][r] * matrix[nSourceMatrix][c][0] +
matrix[2][1][r] * matrix[nSourceMatrix][c][1] +
matrix[2][2][r] * matrix[nSourceMatrix][c][2];
}
}
std::swap(nTargetMatrix, nSourceMatrix);
bDirty = true; // Any transform multiply dirties the inversion
}
void olc::GFX2D::Transform2D::Rotate(float fTheta)
{
// Construct Rotation Matrix
matrix[2][0][0] = cosf(fTheta); matrix[2][1][0] = sinf(fTheta); matrix[2][2][0] = 0.0f;
matrix[2][0][1] = -sinf(fTheta); matrix[2][1][1] = cosf(fTheta); matrix[2][2][1] = 0.0f;
matrix[2][0][2] = 0.0f; matrix[2][1][2] = 0.0f; matrix[2][2][2] = 1.0f;
Multiply();
}
void olc::GFX2D::Transform2D::Scale(float sx, float sy)
{
// Construct Scale Matrix
matrix[2][0][0] = sx; matrix[2][1][0] = 0.0f; matrix[2][2][0] = 0.0f;
matrix[2][0][1] = 0.0f; matrix[2][1][1] = sy; matrix[2][2][1] = 0.0f;
matrix[2][0][2] = 0.0f; matrix[2][1][2] = 0.0f; matrix[2][2][2] = 1.0f;
Multiply();
}
void olc::GFX2D::Transform2D::Shear(float sx, float sy)
{
// Construct Shear Matrix
matrix[2][0][0] = 1.0f; matrix[2][1][0] = sx; matrix[2][2][0] = 0.0f;
matrix[2][0][1] = sy; matrix[2][1][1] = 1.0f; matrix[2][2][1] = 0.0f;
matrix[2][0][2] = 0.0f; matrix[2][1][2] = 0.0f; matrix[2][2][2] = 1.0f;
Multiply();
}
void olc::GFX2D::Transform2D::Translate(float ox, float oy)
{
// Construct Translate Matrix
matrix[2][0][0] = 1.0f; matrix[2][1][0] = 0.0f; matrix[2][2][0] = ox;
matrix[2][0][1] = 0.0f; matrix[2][1][1] = 1.0f; matrix[2][2][1] = oy;
matrix[2][0][2] = 0.0f; matrix[2][1][2] = 0.0f; matrix[2][2][2] = 1.0f;
Multiply();
}
void olc::GFX2D::Transform2D::Perspective(float ox, float oy)
{
// Construct Translate Matrix
matrix[2][0][0] = 1.0f; matrix[2][1][0] = 0.0f; matrix[2][2][0] = 0.0f;
matrix[2][0][1] = 0.0f; matrix[2][1][1] = 1.0f; matrix[2][2][1] = 0.0f;
matrix[2][0][2] = ox; matrix[2][1][2] = oy; matrix[2][2][2] = 1.0f;
Multiply();
}
void olc::GFX2D::Transform2D::Forward(float in_x, float in_y, float &out_x, float &out_y)
{
out_x = in_x * matrix[nSourceMatrix][0][0] + in_y * matrix[nSourceMatrix][1][0] + matrix[nSourceMatrix][2][0];
out_y = in_x * matrix[nSourceMatrix][0][1] + in_y * matrix[nSourceMatrix][1][1] + matrix[nSourceMatrix][2][1];
float out_z = in_x * matrix[nSourceMatrix][0][2] + in_y * matrix[nSourceMatrix][1][2] + matrix[nSourceMatrix][2][2];
if (out_z != 0)
{
out_x /= out_z;
out_y /= out_z;
}
}
void olc::GFX2D::Transform2D::Backward(float in_x, float in_y, float &out_x, float &out_y)
{
out_x = in_x * matrix[3][0][0] + in_y * matrix[3][1][0] + matrix[3][2][0];
out_y = in_x * matrix[3][0][1] + in_y * matrix[3][1][1] + matrix[3][2][1];
float out_z = in_x * matrix[3][0][2] + in_y * matrix[3][1][2] + matrix[3][2][2];
if (out_z != 0)
{
out_x /= out_z;
out_y /= out_z;
}
}
void olc::GFX2D::Transform2D::Invert()
{
if (bDirty) // Obviously costly so only do if needed
{
float det = matrix[nSourceMatrix][0][0] * (matrix[nSourceMatrix][1][1] * matrix[nSourceMatrix][2][2] - matrix[nSourceMatrix][1][2] * matrix[nSourceMatrix][2][1]) -
matrix[nSourceMatrix][1][0] * (matrix[nSourceMatrix][0][1] * matrix[nSourceMatrix][2][2] - matrix[nSourceMatrix][2][1] * matrix[nSourceMatrix][0][2]) +
matrix[nSourceMatrix][2][0] * (matrix[nSourceMatrix][0][1] * matrix[nSourceMatrix][1][2] - matrix[nSourceMatrix][1][1] * matrix[nSourceMatrix][0][2]);
float idet = 1.0f / det;
matrix[3][0][0] = (matrix[nSourceMatrix][1][1] * matrix[nSourceMatrix][2][2] - matrix[nSourceMatrix][1][2] * matrix[nSourceMatrix][2][1]) * idet;
matrix[3][1][0] = (matrix[nSourceMatrix][2][0] * matrix[nSourceMatrix][1][2] - matrix[nSourceMatrix][1][0] * matrix[nSourceMatrix][2][2]) * idet;
matrix[3][2][0] = (matrix[nSourceMatrix][1][0] * matrix[nSourceMatrix][2][1] - matrix[nSourceMatrix][2][0] * matrix[nSourceMatrix][1][1]) * idet;
matrix[3][0][1] = (matrix[nSourceMatrix][2][1] * matrix[nSourceMatrix][0][2] - matrix[nSourceMatrix][0][1] * matrix[nSourceMatrix][2][2]) * idet;
matrix[3][1][1] = (matrix[nSourceMatrix][0][0] * matrix[nSourceMatrix][2][2] - matrix[nSourceMatrix][2][0] * matrix[nSourceMatrix][0][2]) * idet;
matrix[3][2][1] = (matrix[nSourceMatrix][0][1] * matrix[nSourceMatrix][2][0] - matrix[nSourceMatrix][0][0] * matrix[nSourceMatrix][2][1]) * idet;
matrix[3][0][2] = (matrix[nSourceMatrix][0][1] * matrix[nSourceMatrix][1][2] - matrix[nSourceMatrix][0][2] * matrix[nSourceMatrix][1][1]) * idet;
matrix[3][1][2] = (matrix[nSourceMatrix][0][2] * matrix[nSourceMatrix][1][0] - matrix[nSourceMatrix][0][0] * matrix[nSourceMatrix][1][2]) * idet;
matrix[3][2][2] = (matrix[nSourceMatrix][0][0] * matrix[nSourceMatrix][1][1] - matrix[nSourceMatrix][0][1] * matrix[nSourceMatrix][1][0]) * idet;
bDirty = false;
}
}
}
#endif
#endif