You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
217 lines
7.6 KiB
217 lines
7.6 KiB
import logging
|
|
import math
|
|
import re
|
|
import timeit
|
|
import datetime
|
|
from dataclasses import dataclass, field
|
|
from typing import Dict, Tuple, List, Optional, Iterable
|
|
|
|
import pykakasi
|
|
|
|
|
|
class FuzzyFilteredMap:
|
|
def __init__(self, filter_function=None, matcher=None, additive_only_filter=True):
|
|
self.filter = filter_function or (lambda n: True)
|
|
self.matcher = matcher or FuzzyMatcher()
|
|
self._values = {}
|
|
self.length_cutoff = 0
|
|
self.logger = logging.getLogger(__name__)
|
|
self._stale = True
|
|
self.additive_only_filter = additive_only_filter
|
|
|
|
@property
|
|
def filtered_items(self):
|
|
if not self.additive_only_filter:
|
|
return [item for item in self._values.items() if self.filter(item[1])]
|
|
if self._needs_update:
|
|
self._update_items()
|
|
return self._filtered_items
|
|
|
|
@property
|
|
def _needs_update(self):
|
|
return self._stale or any(self.filter(item[1]) for item in self._filtered_out_items)
|
|
|
|
def _update_items(self):
|
|
self._filtered_items = [item for item in self._values.items() if self.filter(item[1])]
|
|
self._filtered_out_items = [item for item in self._values.items() if not self.filter(item[1])]
|
|
self._stale = False
|
|
|
|
def values(self):
|
|
return FuzzyDictValuesView(self)
|
|
|
|
def has_exact(self, key):
|
|
return romanize(key) in self._values
|
|
|
|
def has_exact_unprocessed(self, key):
|
|
return key in self._values
|
|
|
|
def __delitem__(self, key):
|
|
k = romanize(key)
|
|
self._values.__delitem__(k)
|
|
self._stale = True
|
|
|
|
def __setitem__(self, key, value):
|
|
self.set_unprocessed(romanize(key), value)
|
|
|
|
def set_unprocessed(self, key, value):
|
|
self._values[key] = value
|
|
new_cutoff = math.ceil(len(key) * 1.1)
|
|
if new_cutoff > self.length_cutoff:
|
|
self.length_cutoff = new_cutoff
|
|
self.matcher.set_max_length(new_cutoff)
|
|
self._stale = True
|
|
|
|
def __getitem__(self, key):
|
|
start_time = timeit.default_timer()
|
|
key = romanize(key)
|
|
if len(key) > self.length_cutoff:
|
|
self.logger.debug(f'Rejected key "{key}" due to length.')
|
|
return None
|
|
try:
|
|
matcher = self.matcher
|
|
result = min((score, item) for score, item in
|
|
((matcher.score(key, item[0]), item) for item in self.filtered_items)
|
|
if score <= 0)[1][1]
|
|
self.logger.info(f'Found key "{key}" in time {timeit.default_timer() - start_time}.')
|
|
return result
|
|
except ValueError:
|
|
self.logger.info(f'Found no results for key "{key}" in time {timeit.default_timer() - start_time}.')
|
|
return None
|
|
|
|
def get_sorted(self, key: str):
|
|
start_time = timeit.default_timer()
|
|
if len(key) > self.length_cutoff:
|
|
self.logger.debug(f'Rejected key "{key}" due to length.')
|
|
return []
|
|
key = romanize(key)
|
|
values = [item[1] for score, item in
|
|
sorted(
|
|
(self.matcher.score(key, item[0]), item) for item in self.filtered_items)
|
|
if score <= 0]
|
|
self.logger.info(f'Searched key "{key}" in time {timeit.default_timer() - start_time}.')
|
|
return values
|
|
|
|
|
|
class FuzzyDictValuesView:
|
|
def __init__(self, map: FuzzyFilteredMap):
|
|
self._map = map
|
|
|
|
def __contains__(self, item):
|
|
return item in self._map._values.values() and self._map.filter(item)
|
|
|
|
def __iter__(self):
|
|
yield from (v for _, v in self._map.filtered_items)
|
|
|
|
|
|
@dataclass
|
|
class FuzzyMatchConfig:
|
|
base_score: float = 0.0
|
|
insertion_weight: float = 0.001
|
|
deletion_weight: float = 1.0
|
|
default_substitution_weight: float = 1.0
|
|
match_weight: float = -0.2
|
|
special_substitution_weights: Dict[Tuple[str, str], float] = field(default_factory=lambda: {
|
|
('v', 'b'): 0.0,
|
|
('l', 'r'): 0.0,
|
|
('c', 'k'): 0.0,
|
|
('y', 'i'): 0.4,
|
|
})
|
|
word_match_weight: float = -0.2
|
|
whole_match_weight: float = -0.25
|
|
acronym_match_weight: float = -0.3
|
|
|
|
|
|
class FuzzyMatcher:
|
|
def __init__(self, config: FuzzyMatchConfig = None):
|
|
self.config = config or FuzzyMatchConfig()
|
|
self.array: Optional[List[List[float]]] = None
|
|
|
|
def set_max_length(self, length: int):
|
|
if not length:
|
|
self.array = None
|
|
else:
|
|
self.array = [[0] * (length + 1) for _ in range(length + 1)]
|
|
|
|
for i in range(length + 1):
|
|
self.array[i][0] = i * self.config.deletion_weight
|
|
self.array[0][i] = i * self.config.insertion_weight
|
|
|
|
def score(self, source: str, target: str, threshold=0.0):
|
|
if not target:
|
|
return 1
|
|
|
|
l_src = len(source)
|
|
l_tgt = len(target)
|
|
|
|
a = self.array
|
|
|
|
config = self.config
|
|
base_score = config.base_score
|
|
insertion_weight = config.insertion_weight
|
|
deletion_weight = config.deletion_weight
|
|
default_substitution_weight = config.default_substitution_weight
|
|
match_weight = config.match_weight
|
|
special_substitution_weights = config.special_substitution_weights
|
|
word_match_weight = config.word_match_weight
|
|
whole_match_weight = config.whole_match_weight
|
|
acronym_match_weight = config.acronym_match_weight
|
|
|
|
if not a:
|
|
a = [[0] * (l_tgt + 1) for _ in range(l_src + 1)]
|
|
|
|
for i in range(l_src + 1):
|
|
a[i][0] = i
|
|
|
|
for i in range(l_tgt + 1):
|
|
a[0][i] = i * insertion_weight
|
|
|
|
words = target.split()
|
|
word_bonus = min(word_match_weight * max(sum(a == b for a, b in zip(source, w)) for w in words),
|
|
word_match_weight * max(sum(a == b for a, b in
|
|
zip(source, w[0] + strip_vowels(w[1:]))) for w in
|
|
words),
|
|
whole_match_weight * sum(a == b for a, b in zip(strip_spaces(source), strip_spaces(target))),
|
|
acronym_match_weight * sum(
|
|
a == b for a, b in zip(source, ''.join(w[0] for w in words))))
|
|
|
|
threshold -= word_bonus + base_score
|
|
|
|
for i_src in range(1, l_src + 1):
|
|
for i_tgt in range(1, l_tgt + 1):
|
|
a[i_src][i_tgt] = min(a[i_src - 1][i_tgt - 1] + ((special_substitution_weights.get(
|
|
(source[i_src - 1], target[i_tgt - 1]),
|
|
default_substitution_weight
|
|
)) if source[i_src - 1] != target[i_tgt - 1] else match_weight),
|
|
a[i_src - 1][i_tgt] + deletion_weight,
|
|
a[i_src][i_tgt - 1] + insertion_weight)
|
|
|
|
# there are l_scr - i_src source chars remaining
|
|
# each match removes the insertion weight then adds the match weight
|
|
# this is the max difference that can make
|
|
max_additional_score = (l_src - i_src) * (match_weight - insertion_weight)
|
|
if ((a[i_src][l_tgt] + max_additional_score) > threshold and
|
|
(a[i_src][l_tgt - 1] + max_additional_score) > threshold):
|
|
return 1
|
|
|
|
return a[l_src][l_tgt] + word_bonus + base_score
|
|
|
|
|
|
def strip_spaces(s):
|
|
return re.sub(' ', '', s)
|
|
|
|
|
|
def strip_vowels(s):
|
|
return re.sub('[aeoiu]', '', s)
|
|
|
|
|
|
_kks = pykakasi.kakasi()
|
|
|
|
|
|
def romanize(s: str) -> str:
|
|
s = str(s)
|
|
s = re.sub('[\'・]', '', s)
|
|
s = re.sub('[A-Za-z]+', lambda ele: f' {ele[0]} ', s)
|
|
s = re.sub('[0-9]+', lambda ele: f' {ele[0]} ', s)
|
|
s = ' '.join(c['hepburn'].strip().lower() for c in _kks.convert(s))
|
|
s = re.sub(r'[^a-zA-Z0-9_ ]+', '', s)
|
|
return ' '.join(s.split())
|
|
|