improve fuzzy matching performance
This commit is contained in:
parent
d8a1e17a2f
commit
a2236065ec
@ -1,7 +1,9 @@
|
|||||||
import logging
|
import logging
|
||||||
|
import math
|
||||||
import re
|
import re
|
||||||
|
import timeit
|
||||||
from dataclasses import dataclass, field
|
from dataclasses import dataclass, field
|
||||||
from typing import Dict, Tuple, List
|
from typing import Dict, Tuple, List, Optional, Iterable
|
||||||
|
|
||||||
import pykakasi
|
import pykakasi
|
||||||
|
|
||||||
@ -24,16 +26,19 @@ class FuzzyMap:
|
|||||||
def __setitem__(self, key, value):
|
def __setitem__(self, key, value):
|
||||||
k = romanize(key)
|
k = romanize(key)
|
||||||
self._values[k] = value
|
self._values[k] = value
|
||||||
self.max_length = len(k)
|
self.max_length = max(self.max_length, math.ceil(len(k) * 1.1))
|
||||||
|
self.matcher.set_max_length(self.max_length)
|
||||||
|
|
||||||
def __getitem__(self, key):
|
def __getitem__(self, key):
|
||||||
if len(key) > self.max_length * 1.1:
|
start_time = timeit.default_timer()
|
||||||
|
if len(key) > self.max_length:
|
||||||
self.logger.debug(f'Rejected key "{key}" due to length.')
|
self.logger.debug(f'Rejected key "{key}" due to length.')
|
||||||
return None
|
return None
|
||||||
key = romanize(key)
|
key = romanize(key)
|
||||||
result = min((k for k, v in self._values.items() if self.filter(v)), key=lambda k: self.matcher.score(key, k))
|
result = self.matcher.closest_match(key, (k for k, v in self._values.items() if self.filter(v)))
|
||||||
if self.matcher.score(key, result) > 0:
|
if not result:
|
||||||
return None
|
return None
|
||||||
|
self.logger.info(f'Found key "{key}" in time {timeit.default_timer() - start_time}.')
|
||||||
return self._values[result]
|
return self._values[result]
|
||||||
|
|
||||||
|
|
||||||
@ -55,56 +60,86 @@ class FuzzyMatchConfig:
|
|||||||
class FuzzyMatcher:
|
class FuzzyMatcher:
|
||||||
def __init__(self, config: FuzzyMatchConfig = None):
|
def __init__(self, config: FuzzyMatchConfig = None):
|
||||||
self.config = config or FuzzyMatchConfig()
|
self.config = config or FuzzyMatchConfig()
|
||||||
|
self.array: Optional[List[List[float]]] = None
|
||||||
|
|
||||||
|
def set_max_length(self, length: int):
|
||||||
|
if not length:
|
||||||
|
self.array = None
|
||||||
|
else:
|
||||||
|
self.array = [[0] * (length + 1) for _ in range(length + 1)]
|
||||||
|
|
||||||
|
for i in range(length + 1):
|
||||||
|
self.array[i][0] = i * self.config.deletion_weight
|
||||||
|
self.array[0][i] = i * self.config.insertion_weight
|
||||||
|
|
||||||
|
def closest_match(self, source: str, targets: Iterable[str]) -> Optional[str]:
|
||||||
|
threshold = 0
|
||||||
|
closest = None
|
||||||
|
for target in targets:
|
||||||
|
score = self.score(source, target, threshold)
|
||||||
|
if score <= 0:
|
||||||
|
threshold = score
|
||||||
|
closest = target
|
||||||
|
return closest
|
||||||
|
|
||||||
|
def score(self, source: str, target: str, threshold=0.0):
|
||||||
|
# target must not be empty
|
||||||
|
|
||||||
def score(self, source: str, target: str):
|
|
||||||
l_src = len(source)
|
l_src = len(source)
|
||||||
l_tgt = len(target)
|
l_tgt = len(target)
|
||||||
a: List[List[float]] = [[0] * (l_tgt + 1) for _ in range(l_src + 1)]
|
|
||||||
|
a = self.array
|
||||||
|
|
||||||
|
config = self.config
|
||||||
|
base_score = config.base_score
|
||||||
|
insertion_weight = config.insertion_weight
|
||||||
|
deletion_weight = config.deletion_weight
|
||||||
|
default_substitution_weight = config.default_substitution_weight
|
||||||
|
match_weight = config.match_weight
|
||||||
|
special_substitution_weights = config.special_substitution_weights
|
||||||
|
word_match_weight = config.word_match_weight
|
||||||
|
acronym_match_weight = config.acronym_match_weight
|
||||||
|
|
||||||
|
if not a:
|
||||||
|
a = [[0] * (l_tgt + 1) for _ in range(l_src + 1)]
|
||||||
|
|
||||||
for i in range(l_src + 1):
|
for i in range(l_src + 1):
|
||||||
a[i][0] = i
|
a[i][0] = i
|
||||||
|
|
||||||
for i in range(l_tgt + 1):
|
for i in range(l_tgt + 1):
|
||||||
a[0][i] = i * self.config.insertion_weight
|
a[0][i] = i * insertion_weight
|
||||||
|
|
||||||
def strip_vowels(s):
|
def strip_vowels(s):
|
||||||
return re.sub('[aeoiu]', '', s)
|
return re.sub('[aeoiu]', '', s)
|
||||||
|
|
||||||
words = target.split()
|
words = target.split()
|
||||||
word_bonus = min(self.config.word_match_weight * max(sum(a == b for a, b in zip(source, w)) for w in words),
|
word_bonus = min(word_match_weight * max(sum(a == b for a, b in zip(source, w)) for w in words),
|
||||||
self.config.word_match_weight * max(sum(a == b for a, b in
|
word_match_weight * max(sum(a == b for a, b in
|
||||||
zip(source, w[0] + strip_vowels(w[1:]))) for w in
|
zip(source, w[0] + strip_vowels(w[1:]))) for w in
|
||||||
words),
|
words),
|
||||||
self.config.acronym_match_weight * sum(
|
acronym_match_weight * sum(
|
||||||
a == b for a, b in zip(source, ''.join(w[0] for w in words))))
|
a == b for a, b in zip(source, ''.join(w[0] for w in words))))
|
||||||
|
|
||||||
def sub_weight_at(n, m):
|
threshold -= word_bonus + base_score
|
||||||
if source[n - 1] != target[m - 1]:
|
|
||||||
return self.config.special_substitution_weights.get(
|
|
||||||
(source[n - 1], target[m - 1]),
|
|
||||||
self.config.default_substitution_weight
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
return self.config.match_weight
|
|
||||||
|
|
||||||
for i_src in range(1, l_src + 1):
|
for i_src in range(1, l_src + 1):
|
||||||
for i_tgt in range(1, l_tgt + 1):
|
for i_tgt in range(1, l_tgt + 1):
|
||||||
a[i_src][i_tgt] = min(a[i_src - 1][i_tgt - 1] + sub_weight_at(i_src, i_tgt),
|
a[i_src][i_tgt] = min(a[i_src - 1][i_tgt - 1] + ((special_substitution_weights.get(
|
||||||
a[i_src - 1][i_tgt] + self.config.deletion_weight,
|
(source[i_src - 1], target[i_tgt - 1]),
|
||||||
a[i_src][i_tgt - 1] + self.config.insertion_weight)
|
default_substitution_weight
|
||||||
|
)) if source[i_src - 1] != target[i_tgt - 1] else match_weight),
|
||||||
|
a[i_src - 1][i_tgt] + deletion_weight,
|
||||||
|
a[i_src][i_tgt - 1] + insertion_weight)
|
||||||
|
|
||||||
# there are l_scr - i_src source chars remaining
|
# there are l_scr - i_src source chars remaining
|
||||||
# each match removes the insertion weight then adds the match weight
|
# each match removes the insertion weight then adds the match weight
|
||||||
# (l_src - i_src) * (self.config.match_weight - self.config.insertion_weight)
|
# this is the max difference that can make
|
||||||
# is the max difference that can make
|
max_additional_score = (l_src - i_src) * (match_weight - insertion_weight)
|
||||||
max_additional_score = ((l_src - i_src) * (self.config.match_weight - self.config.insertion_weight) +
|
if ((a[i_src][l_tgt] + max_additional_score) > threshold and
|
||||||
word_bonus + self.config.base_score)
|
(a[i_src][l_tgt - 1] + max_additional_score) > threshold):
|
||||||
if i_tgt == l_tgt and (
|
|
||||||
a[i_src][i_tgt] + max_additional_score) > 0 and \
|
|
||||||
(a[i_src][i_tgt - 1] + max_additional_score) > 0:
|
|
||||||
return 1
|
return 1
|
||||||
|
|
||||||
return a[l_src][l_tgt] + word_bonus + self.config.base_score
|
return a[l_src][l_tgt] + word_bonus + base_score
|
||||||
|
|
||||||
|
|
||||||
def romanize(s: str) -> str:
|
def romanize(s: str) -> str:
|
||||||
|
Loading…
x
Reference in New Issue
Block a user