/* * Copyright (c) 2009-2018 jMonkeyEngine * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * * Neither the name of 'jMonkeyEngine' nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ package com.jme3.bullet; import com.jme3.app.Application; import com.jme3.app.state.AppState; import com.jme3.app.state.AppStateManager; import com.jme3.bullet.PhysicsSpace.BroadphaseType; import com.jme3.bullet.debug.BulletDebugAppState; import com.jme3.math.Vector3f; import com.jme3.renderer.RenderManager; import java.util.concurrent.*; import java.util.logging.Level; import java.util.logging.Logger; /** * An app state to manage a single Bullet physics space. *
* This class is shared between JBullet and Native Bullet. * * @author normenhansen */ public class BulletAppState implements AppState, PhysicsTickListener { /** * true if-and-only-if the physics simulation is running (started but not * yet stopped) */ protected boolean initialized = false; protected Application app; /** * manager that manages this state, set during attach */ protected AppStateManager stateManager; /** * executor service for physics tasks, or null if parallel simulation is not * running */ protected ScheduledThreadPoolExecutor executor; /** * physics space managed by this state, or null if no simulation running */ protected PhysicsSpace pSpace; /** * threading mode to use (not null) */ protected ThreadingType threadingType = ThreadingType.SEQUENTIAL; /** * broadphase collision-detection algorithm for the physics space to use * (not null) */ protected BroadphaseType broadphaseType = BroadphaseType.DBVT; /** * minimum coordinate values for the physics space when using AXIS_SWEEP * broadphase algorithms (not null) */ protected Vector3f worldMin = new Vector3f(-10000f, -10000f, -10000f); /** * maximum coordinate values for the physics space when using AXIS_SWEEP * broadphase algorithms (not null) */ protected Vector3f worldMax = new Vector3f(10000f, 10000f, 10000f); /** * simulation speed multiplier (default=1, paused=0) */ protected float speed = 1; /** * true if-and-only-if this state is enabled */ protected boolean active = true; /** * true if-and-only-if debug visualization is enabled */ protected boolean debugEnabled = false; /** * app state to manage the debug visualization, or null if none */ protected BulletDebugAppState debugAppState; /** * time interval between frames (in seconds) from the most recent update */ protected float tpf; /** * current physics task, or null if none */ protected Future physicsFuture; /** * Instantiate an app state to manage a new PhysicsSpace with DBVT collision * detection. *
* Use getStateManager().addState(bulletAppState) to start physics. */ public BulletAppState() { } /** * Instantiate an app state to manage a new PhysicsSpace. *
* Use getStateManager().addState(bulletAppState) to start physics. * * @param broadphaseType which broadphase collision-detection algorithm to * use (not null) */ public BulletAppState(BroadphaseType broadphaseType) { this(new Vector3f(-10000f, -10000f, -10000f), new Vector3f(10000f, 10000f, 10000f), broadphaseType); } /** * Instantiate an app state to manage a new PhysicsSpace with AXIS_SWEEP_3 * collision detection. *
* Use getStateManager().addState(bulletAppState) to start physics. * * @param worldMin the desired minimum coordinate values (not null, * unaffected, default=-10k,-10k,-10k) * @param worldMax the desired maximum coordinate values (not null, * unaffected, default=10k,10k,10k) */ public BulletAppState(Vector3f worldMin, Vector3f worldMax) { this(worldMin, worldMax, BroadphaseType.AXIS_SWEEP_3); } /** * Instantiate an app state to manage a new PhysicsSpace. *
* Use getStateManager().addState(bulletAppState) to enable physics.
*
* @param worldMin the desired minimum coordinate values (not null,
* unaffected, default=-10k,-10k,-10k)
* @param worldMax the desired maximum coordinate values (not null,
* unaffected, default=10k,10k,10k)
* @param broadphaseType which broadphase collision-detection algorithm to
* use (not null)
*/
public BulletAppState(Vector3f worldMin, Vector3f worldMax, BroadphaseType broadphaseType) {
this.worldMin.set(worldMin);
this.worldMax.set(worldMax);
this.broadphaseType = broadphaseType;
}
/**
* Allocate the physics space and start physics for ThreadingType.PARALLEL.
*
* @return true if successful, otherwise false
*/
private boolean startPhysicsOnExecutor() {
if (executor != null) {
executor.shutdown();
}
executor = new ScheduledThreadPoolExecutor(1);
final BulletAppState app = this;
Callable
* Physics starts automatically after the state is attached. To start it
* sooner, invoke this method.
*/
public void startPhysics() {
if (initialized) {
return;
}
switch (threadingType) {
case PARALLEL:
boolean success = startPhysicsOnExecutor();
assert success;
assert pSpace != null;
break;
case SEQUENTIAL:
pSpace = new PhysicsSpace(worldMin, worldMax, broadphaseType);
pSpace.addTickListener(this);
break;
default:
throw new IllegalStateException(threadingType.toString());
}
initialized = true;
}
/**
* Stop physics after this state is detached.
*/
public void stopPhysics() {
if(!initialized){
return;
}
if (executor != null) {
executor.shutdown();
executor = null;
}
pSpace.removeTickListener(this);
pSpace.destroy();
initialized = false;
}
/**
* Initialize this state prior to its 1st update. Should be invoked only by
* a subclass or by the AppStateManager.
*
* @param stateManager the manager for this state (not null)
* @param app the application which owns this state (not null)
*/
public void initialize(AppStateManager stateManager, Application app) {
this.app = app;
this.stateManager = stateManager;
startPhysics();
}
/**
* Test whether the physics simulation is running (started but not yet
* stopped).
*
* @return true if running, otherwise false
*/
public boolean isInitialized() {
return initialized;
}
/**
* Enable or disable this state.
*
* @param enabled true → enable, false → disable
*/
public void setEnabled(boolean enabled) {
this.active = enabled;
}
/**
* Test whether this state is enabled.
*
* @return true if enabled, otherwise false
*/
public boolean isEnabled() {
return active;
}
/**
* Alter whether debug visualization is enabled.
*
* @param debugEnabled true → enable, false → disable
*/
public void setDebugEnabled(boolean debugEnabled) {
this.debugEnabled = debugEnabled;
}
/**
* Test whether debug visualization is enabled.
*
* @return true if enabled, otherwise false
*/
public boolean isDebugEnabled() {
return debugEnabled;
}
/**
* Transition this state from detached to initializing. Should be invoked
* only by a subclass or by the AppStateManager.
*
* @param stateManager (not null)
*/
public void stateAttached(AppStateManager stateManager) {
if (!initialized) {
startPhysics();
}
if (threadingType == ThreadingType.PARALLEL) {
PhysicsSpace.setLocalThreadPhysicsSpace(pSpace);
}
if (debugEnabled) {
debugAppState = new BulletDebugAppState(pSpace);
stateManager.attach(debugAppState);
}
}
/**
* Transition this state from running to terminating. Should be invoked only
* by a subclass or by the AppStateManager.
*
* @param stateManager (not null)
*/
public void stateDetached(AppStateManager stateManager) {
}
/**
* Update this state prior to rendering. Should be invoked only by a
* subclass or by the AppStateManager. Invoked once per frame, provided the
* state is attached and enabled.
*
* @param tpf the time interval between frames (in seconds, ≥0)
*/
public void update(float tpf) {
if (debugEnabled && debugAppState == null && pSpace != null) {
debugAppState = new BulletDebugAppState(pSpace);
stateManager.attach(debugAppState);
} else if (!debugEnabled && debugAppState != null) {
stateManager.detach(debugAppState);
debugAppState = null;
}
if (!active) {
return;
}
pSpace.distributeEvents();
this.tpf = tpf;
}
/**
* Render this state. Should be invoked only by a subclass or by the
* AppStateManager. Invoked once per frame, provided the state is attached
* and enabled.
*
* @param rm the render manager (not null)
*/
public void render(RenderManager rm) {
if (!active) {
return;
}
if (threadingType == ThreadingType.PARALLEL) {
physicsFuture = executor.submit(parallelPhysicsUpdate);
} else if (threadingType == ThreadingType.SEQUENTIAL) {
pSpace.update(active ? tpf * speed : 0);
} else {
}
}
/**
* Update this state after all rendering commands are flushed. Should be
* invoked only by a subclass or by the AppStateManager. Invoked once per
* frame, provided the state is attached and enabled.
*/
public void postRender() {
if (physicsFuture != null) {
try {
physicsFuture.get();
physicsFuture = null;
} catch (InterruptedException ex) {
Logger.getLogger(BulletAppState.class.getName()).log(Level.SEVERE, null, ex);
} catch (ExecutionException ex) {
Logger.getLogger(BulletAppState.class.getName()).log(Level.SEVERE, null, ex);
}
}
}
/**
* Transition this state from terminating to detached. Should be invoked
* only by a subclass or by the AppStateManager. Invoked once for each time
* {@link #initialize(com.jme3.app.state.AppStateManager, com.jme3.app.Application)}
* is invoked.
*/
public void cleanup() {
if (debugAppState != null) {
stateManager.detach(debugAppState);
debugAppState = null;
}
stopPhysics();
}
/**
* Read which type of threading this app state uses.
*
* @return the threadingType (not null)
*/
public ThreadingType getThreadingType() {
return threadingType;
}
/**
* Alter which type of threading this app state uses. Not allowed after
* attaching the app state.
*
* @param threadingType the desired type (not null, default=SEQUENTIAL)
*/
public void setThreadingType(ThreadingType threadingType) {
this.threadingType = threadingType;
}
/**
* Alter the broadphase type the physics space will use. Not allowed after
* attaching the app state.
*
* @param broadphaseType an enum value (not null, default=DBVT)
*/
public void setBroadphaseType(BroadphaseType broadphaseType) {
this.broadphaseType = broadphaseType;
}
/**
* Alter the coordinate range. Not allowed after attaching the app state.
*
* @param worldMin the desired minimum coordinate values when using
* AXIS_SWEEP broadphase algorithms (not null, alias created,
* default=-10k,-10k,-10k)
*/
public void setWorldMin(Vector3f worldMin) {
this.worldMin = worldMin;
}
/**
* Alter the coordinate range. Not allowed after attaching the app state.
*
* @param worldMax the desired maximum coordinate values when using
* AXIS_SWEEP broadphase algorithms (not null, alias created,
* default=10k,10k,10k)
*/
public void setWorldMax(Vector3f worldMax) {
this.worldMax = worldMax;
}
/**
* Read the simulation speed.
*
* @return speed (≥0, default=1)
*/
public float getSpeed() {
return speed;
}
/**
* Alter the simulation speed.
*
* @param speed the desired speed (≥0, default=1)
*/
public void setSpeed(float speed) {
this.speed = speed;
}
/**
* Callback from Bullet, invoked just before the physics is stepped. A good
* time to clear/apply forces.
*
* @param space the space that is about to be stepped (not null)
* @param f the time per physics step (in seconds, ≥0)
*/
public void prePhysicsTick(PhysicsSpace space, float f) {
}
/**
* Callback from Bullet, invoked just after the physics is stepped. A good
* time to clear/apply forces.
*
* @param space the space that is about to be stepped (not null)
* @param f the time per physics step (in seconds, ≥0)
*/
public void physicsTick(PhysicsSpace space, float f) {
}
/**
* Enumerate threading modes.
*/
public enum ThreadingType {
/**
* Default mode: user update, physics update, and rendering happen
* sequentially. (single threaded)
*/
SEQUENTIAL,
/**
* Parallel threaded mode: physics update and rendering are executed in
* parallel, update order is maintained.
*/
PARALLEL,
}
}