Feature: added smooth/flat support for NURB surfaces.

experimental
jmekaelthas 10 years ago
parent b4a9ca4bee
commit fa5845d528
  1. 118
      jme3-core/src/main/java/com/jme3/scene/shape/Surface.java

@ -39,6 +39,8 @@ import com.jme3.math.Vector4f;
import com.jme3.scene.Mesh;
import com.jme3.scene.VertexBuffer;
import com.jme3.util.BufferUtils;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
@ -50,7 +52,6 @@ import java.util.Map;
* @author Marcin Roguski (Kealthas)
*/
public class Surface extends Mesh {
private SplineType type; // the type of the surface
private List<List<Vector4f>> controlPoints; // space control points and their weights
private List<Float>[] knots; // knots of the surface
@ -67,15 +68,15 @@ public class Surface extends Mesh {
* @param vSegments the amount of V segments
* @param basisUFunctionDegree the degree of basis U function
* @param basisVFunctionDegree the degree of basis V function
* @param smooth defines if the mesu should be smooth (true) or flat (false)
*/
private Surface(List<List<Vector4f>> controlPoints, List<Float>[] nurbKnots,
int uSegments, int vSegments, int basisUFunctionDegree, int basisVFunctionDegree) {
private Surface(List<List<Vector4f>> controlPoints, List<Float>[] nurbKnots, int uSegments, int vSegments, int basisUFunctionDegree, int basisVFunctionDegree, boolean smooth) {
this.validateInputData(controlPoints, nurbKnots, uSegments, vSegments);
this.type = SplineType.Nurb;
type = SplineType.Nurb;
this.uSegments = uSegments;
this.vSegments = vSegments;
this.controlPoints = controlPoints;
this.knots = nurbKnots;
knots = nurbKnots;
this.basisUFunctionDegree = basisUFunctionDegree;
CurveAndSurfaceMath.prepareNurbsKnots(nurbKnots[0], basisUFunctionDegree);
if (nurbKnots[1] != null) {
@ -83,7 +84,27 @@ public class Surface extends Mesh {
CurveAndSurfaceMath.prepareNurbsKnots(nurbKnots[1], basisVFunctionDegree);
}
this.buildSurface();
this.buildSurface(smooth);
}
/**
* This method creates a NURBS surface. The created mesh is smooth by default.
* @param controlPoints
* space control points
* @param nurbKnots
* knots of the surface
* @param uSegments
* the amount of U segments
* @param vSegments
* the amount of V segments
* @param basisUFunctionDegree
* the degree of basis U function
* @param basisVFunctionDegree
* the degree of basis V function
* @return an instance of NURBS surface
*/
public static final Surface createNurbsSurface(List<List<Vector4f>> controlPoints, List<Float>[] nurbKnots, int uSegments, int vSegments, int basisUFunctionDegree, int basisVFunctionDegree) {
return Surface.createNurbsSurface(controlPoints, nurbKnots, uSegments, vSegments, basisUFunctionDegree, basisVFunctionDegree, true);
}
/**
@ -96,18 +117,18 @@ public class Surface extends Mesh {
* @param basisVFunctionDegree the degree of basis V function
* @return an instance of NURBS surface
*/
public static final Surface createNurbsSurface(List<List<Vector4f>> controlPoints, List<Float>[] nurbKnots,
int uSegments, int vSegments, int basisUFunctionDegree, int basisVFunctionDegree) {
Surface result = new Surface(controlPoints, nurbKnots, uSegments, vSegments, basisUFunctionDegree, basisVFunctionDegree);
public static final Surface createNurbsSurface(List<List<Vector4f>> controlPoints, List<Float>[] nurbKnots, int uSegments, int vSegments, int basisUFunctionDegree, int basisVFunctionDegree, boolean smooth) {
Surface result = new Surface(controlPoints, nurbKnots, uSegments, vSegments, basisUFunctionDegree, basisVFunctionDegree, smooth);
result.type = SplineType.Nurb;
return result;
}
/**
* This method creates the surface.
* @param smooth
* defines if the mesu should be smooth (true) or flat (false)
*/
private void buildSurface() {
boolean smooth = true;//TODO: take smoothing into consideration
private void buildSurface(boolean smooth) {
float minUKnot = this.getMinUNurbKnot();
float maxUKnot = this.getMaxUNurbKnot();
float deltaU = (maxUKnot - minUKnot) / uSegments;
@ -116,54 +137,97 @@ public class Surface extends Mesh {
float maxVKnot = this.getMaxVNurbKnot();
float deltaV = (maxVKnot - minVKnot) / vSegments;
Vector3f[] vertices = new Vector3f[(uSegments + 1) * (vSegments + 1)];
List<Vector3f> vertices = new ArrayList<Vector3f>((uSegments + 1) * (vSegments + 1));// new Vector3f[(uSegments + 1) * (vSegments + 1)];
float u = minUKnot, v = minVKnot;
int arrayIndex = 0;
for (int i = 0; i <= vSegments; ++i) {
for (int j = 0; j <= uSegments; ++j) {
Vector3f interpolationResult = new Vector3f();
CurveAndSurfaceMath.interpolate(u, v, controlPoints, knots, basisUFunctionDegree, basisVFunctionDegree, interpolationResult);
vertices[arrayIndex++] = interpolationResult;
vertices.add(interpolationResult);
u += deltaU;
}
u = minUKnot;
v += deltaV;
}
if(!smooth) {
// separate the vertices that will share faces (they will need separate normals anyway)
// what happens with the mesh is represented here (be careful with code formatting here !!!)
// * -- * -- * * -- * * -- *
// | | | | | | |
// * -- * -- * * -- * * -- *
// | | | ==> * -- * * -- *
// * -- * -- * | | | |
// | | | * -- * * -- *
// * -- * -- * .............
// first duplicate all verts that are not on the border along the U axis
int uVerticesAmount = uSegments + 1;
int vVerticesAmount = vSegments + 1;
int newUVerticesAmount = 2 + (uVerticesAmount - 2) * 2;
List<Vector3f> verticesWithUDuplicates = new ArrayList<Vector3f>(vVerticesAmount * newUVerticesAmount);
for(int i=0;i<vertices.size();++i) {
verticesWithUDuplicates.add(vertices.get(i));
if(i % uVerticesAmount != 0 && i % uVerticesAmount != uVerticesAmount - 1) {
verticesWithUDuplicates.add(vertices.get(i));
}
}
// and then duplicate all verts that are not on the border along the V axis
List<Vector3f> verticesWithVDuplicates = new ArrayList<Vector3f>(verticesWithUDuplicates.size() * vVerticesAmount);
verticesWithVDuplicates.addAll(verticesWithUDuplicates.subList(0, newUVerticesAmount));
for(int i=1;i<vSegments;++i) {
verticesWithVDuplicates.addAll(verticesWithUDuplicates.subList(i * newUVerticesAmount, i * newUVerticesAmount + newUVerticesAmount));
verticesWithVDuplicates.addAll(verticesWithUDuplicates.subList(i * newUVerticesAmount, i * newUVerticesAmount + newUVerticesAmount));
}
verticesWithVDuplicates.addAll(verticesWithUDuplicates.subList(vSegments * newUVerticesAmount, vSegments * newUVerticesAmount + newUVerticesAmount));
vertices = verticesWithVDuplicates;
}
// adding indexes
int uVerticesAmount = uSegments + 1;
int[] indices = new int[uSegments * vSegments * 6];
arrayIndex = 0;
int arrayIndex = 0;
int uVerticesAmount = smooth ? uSegments + 1 : uSegments * 2;
if(smooth) {
for (int i = 0; i < vSegments; ++i) {
for (int j = 0; j < uSegments; ++j) {
indices[arrayIndex++] = j + i * uVerticesAmount;
indices[arrayIndex++] = j + i * uVerticesAmount + 1;
indices[arrayIndex++] = j + i * uVerticesAmount + uVerticesAmount;
indices[arrayIndex++] = j + i * uVerticesAmount + 1;
indices[arrayIndex++] = j + i * uVerticesAmount + uVerticesAmount + 1;
indices[arrayIndex++] = j + i * uVerticesAmount;
indices[arrayIndex++] = j + i * uVerticesAmount + uVerticesAmount;
indices[arrayIndex++] = j + i * uVerticesAmount + uVerticesAmount + 1;
indices[arrayIndex++] = j + i * uVerticesAmount + 1;
}
}
} else {
for (int i = 0; i < vSegments; ++i) {
for (int j = 0; j < uSegments; ++j) {
indices[arrayIndex++] = i * 2 * uVerticesAmount + uVerticesAmount + j * 2;
indices[arrayIndex++] = i * 2 * uVerticesAmount + j * 2 + 1;
indices[arrayIndex++] = i * 2 * uVerticesAmount + j * 2;
indices[arrayIndex++] = i * 2 * uVerticesAmount + uVerticesAmount + j * 2;
indices[arrayIndex++] = i * 2 * uVerticesAmount + uVerticesAmount + j * 2 + 1;
indices[arrayIndex++] = i * 2 * uVerticesAmount + j * 2 + 1;
}
}
}
Vector3f[] verticesArray = vertices.toArray(new Vector3f[vertices.size()]);
// normalMap merges normals of faces that will be rendered smooth
Map<Vector3f, Vector3f> normalMap = new HashMap<Vector3f, Vector3f>(vertices.length);
Map<Vector3f, Vector3f> normalMap = new HashMap<Vector3f, Vector3f>(verticesArray.length);
for (int i = 0; i < indices.length; i += 3) {
Vector3f n = FastMath.computeNormal(vertices[indices[i]], vertices[indices[i + 1]], vertices[indices[i + 2]]);
this.addNormal(n, normalMap, smooth, vertices[indices[i]], vertices[indices[i + 1]], vertices[indices[i + 2]]);
Vector3f n = FastMath.computeNormal(verticesArray[indices[i]], verticesArray[indices[i + 1]], verticesArray[indices[i + 2]]);
this.addNormal(n, normalMap, smooth, verticesArray[indices[i]], verticesArray[indices[i + 1]], verticesArray[indices[i + 2]]);
}
// preparing normal list (the order of normals must match the order of vertices)
float[] normals = new float[vertices.length * 3];
float[] normals = new float[verticesArray.length * 3];
arrayIndex = 0;
for (int i = 0; i < vertices.length; ++i) {
Vector3f n = normalMap.get(vertices[i]);
for (int i = 0; i < verticesArray.length; ++i) {
Vector3f n = normalMap.get(verticesArray[i]);
normals[arrayIndex++] = n.x;
normals[arrayIndex++] = n.y;
normals[arrayIndex++] = n.z;
}
this.setBuffer(VertexBuffer.Type.Position, 3, BufferUtils.createFloatBuffer(vertices));
this.setBuffer(VertexBuffer.Type.Position, 3, BufferUtils.createFloatBuffer(verticesArray));
this.setBuffer(VertexBuffer.Type.Index, 3, indices);
this.setBuffer(VertexBuffer.Type.Normal, 3, normals);
this.updateBound();

Loading…
Cancel
Save