Feature: curves and surfaces now have their own temporal mesh which

allows to apply modifiers on them.
experimental
jmekaelthas 10 years ago
parent 6ec86fe919
commit c90e50bb2e
  1. 19
      jme3-blender/src/main/java/com/jme3/scene/plugins/blender/curves/BezierCurve.java
  2. 705
      jme3-blender/src/main/java/com/jme3/scene/plugins/blender/curves/CurvesHelper.java
  3. 890
      jme3-blender/src/main/java/com/jme3/scene/plugins/blender/curves/CurvesTemporalMesh.java
  4. 14
      jme3-blender/src/main/java/com/jme3/scene/plugins/blender/file/Structure.java
  5. 41
      jme3-blender/src/main/java/com/jme3/scene/plugins/blender/meshes/Edge.java
  6. 65
      jme3-blender/src/main/java/com/jme3/scene/plugins/blender/meshes/TemporalMesh.java
  7. 6
      jme3-blender/src/main/java/com/jme3/scene/plugins/blender/objects/ObjectHelper.java

@ -28,8 +28,12 @@ public class BezierCurve {
/** Array that stores a radius for each bezier triple. */
private double[] radiuses;
@SuppressWarnings("unchecked")
public BezierCurve(final int type, final List<Structure> bezTriples, final int dimension) {
this(type, bezTriples, dimension, false);
}
@SuppressWarnings("unchecked")
public BezierCurve(final int type, final List<Structure> bezTriples, final int dimension, boolean fixUpAxis) {
if (dimension != 2 && dimension != 3) {
throw new IllegalArgumentException("The dimension of the curve should be 2 or 3!");
}
@ -45,7 +49,12 @@ public class BezierCurve {
DynamicArray<Number> vec = (DynamicArray<Number>) bezTriple.getFieldValue("vec");
for (j = 0; j < 3; ++j) {
for (k = 0; k < dimension; ++k) {
bezierPoints[i][j][k] = vec.get(j, k).floatValue();
bezierPoints[i][j][k] = vec.get(j, k).doubleValue();
}
if (fixUpAxis && dimension == 3) {
double temp = bezierPoints[i][j][2];
bezierPoints[i][j][2] = -bezierPoints[i][j][1];
bezierPoints[i][j][1] = temp;
}
}
radiuses[i++] = ((Number) bezTriple.getFieldValue("radius")).floatValue();
@ -114,9 +123,9 @@ public class BezierCurve {
public List<Vector3f> getControlPoints() {
List<Vector3f> controlPoints = new ArrayList<Vector3f>(bezierPoints.length * 3);
for (int i = 0; i < bezierPoints.length; ++i) {
controlPoints.add(new Vector3f((float)bezierPoints[i][0][0], (float)bezierPoints[i][0][1], (float)bezierPoints[i][0][2]));
controlPoints.add(new Vector3f((float)bezierPoints[i][1][0], (float)bezierPoints[i][1][1], (float)bezierPoints[i][1][2]));
controlPoints.add(new Vector3f((float)bezierPoints[i][2][0], (float)bezierPoints[i][2][1], (float)bezierPoints[i][2][2]));
controlPoints.add(new Vector3f((float) bezierPoints[i][0][0], (float) bezierPoints[i][0][1], (float) bezierPoints[i][0][2]));
controlPoints.add(new Vector3f((float) bezierPoints[i][1][0], (float) bezierPoints[i][1][1], (float) bezierPoints[i][1][2]));
controlPoints.add(new Vector3f((float) bezierPoints[i][2][0], (float) bezierPoints[i][2][1], (float) bezierPoints[i][2][2]));
}
return controlPoints;
}

@ -31,44 +31,16 @@
*/
package com.jme3.scene.plugins.blender.curves;
import java.nio.FloatBuffer;
import java.nio.IntBuffer;
import java.nio.ShortBuffer;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.TreeMap;
import java.util.logging.Logger;
import com.jme3.material.Material;
import com.jme3.material.RenderState.FaceCullMode;
import com.jme3.math.FastMath;
import com.jme3.math.Matrix4f;
import com.jme3.math.Quaternion;
import com.jme3.math.Spline;
import com.jme3.math.Spline.SplineType;
import com.jme3.math.Vector3f;
import com.jme3.math.Vector4f;
import com.jme3.scene.Geometry;
import com.jme3.scene.Mesh;
import com.jme3.scene.VertexBuffer.Type;
import com.jme3.scene.mesh.IndexBuffer;
import com.jme3.scene.plugins.blender.AbstractBlenderHelper;
import com.jme3.scene.plugins.blender.BlenderContext;
import com.jme3.scene.plugins.blender.file.BlenderFileException;
import com.jme3.scene.plugins.blender.file.BlenderInputStream;
import com.jme3.scene.plugins.blender.file.DynamicArray;
import com.jme3.scene.plugins.blender.file.FileBlockHeader;
import com.jme3.scene.plugins.blender.file.Pointer;
import com.jme3.scene.plugins.blender.file.Structure;
import com.jme3.scene.plugins.blender.materials.MaterialContext;
import com.jme3.scene.plugins.blender.materials.MaterialHelper;
import com.jme3.scene.plugins.blender.objects.Properties;
import com.jme3.scene.shape.Curve;
import com.jme3.scene.shape.Surface;
import com.jme3.util.BufferUtils;
/**
* A class that is used in mesh calculations.
@ -95,586 +67,17 @@ public class CurvesHelper extends AbstractBlenderHelper {
super(blenderVersion, blenderContext);
}
/**
* This method converts given curve structure into a list of geometries representing the curve. The list is used here because on object
* can have several separate curves.
* @param curveStructure
* the curve structure
* @param blenderContext
* the blender context
* @return a list of geometries repreenting a single curve object
* @throws BlenderFileException
*/
public List<Geometry> toCurve(Structure curveStructure, BlenderContext blenderContext) throws BlenderFileException {
String name = curveStructure.getName();
int flag = ((Number) curveStructure.getFieldValue("flag")).intValue();
boolean is3D = (flag & 0x01) != 0;
boolean isFront = (flag & 0x02) != 0 && !is3D;
boolean isBack = (flag & 0x04) != 0 && !is3D;
if (isFront) {
LOGGER.warning("No front face in curve implemented yet!");// TODO: implement front face
}
if (isBack) {
LOGGER.warning("No back face in curve implemented yet!");// TODO: implement back face
}
// reading nurbs (and sorting them by material)
List<Structure> nurbStructures = ((Structure) curveStructure.getFieldValue("nurb")).evaluateListBase();
Map<Number, List<Structure>> nurbs = new HashMap<Number, List<Structure>>();
for (Structure nurb : nurbStructures) {
Number matNumber = (Number) nurb.getFieldValue("mat_nr");
List<Structure> nurbList = nurbs.get(matNumber);
if (nurbList == null) {
nurbList = new ArrayList<Structure>();
nurbs.put(matNumber, nurbList);
}
nurbList.add(nurb);
}
// getting materials
MaterialHelper materialHelper = blenderContext.getHelper(MaterialHelper.class);
MaterialContext[] materialContexts = materialHelper.getMaterials(curveStructure, blenderContext);
Material defaultMaterial = null;
if (materialContexts != null) {
for (MaterialContext materialContext : materialContexts) {
materialContext.setFaceCullMode(FaceCullMode.Off);
}
} else {
defaultMaterial = blenderContext.getDefaultMaterial().clone();
defaultMaterial.getAdditionalRenderState().setFaceCullMode(FaceCullMode.Off);
}
// getting or creating bevel object
List<Geometry> bevelObject = null;
Pointer pBevelObject = (Pointer) curveStructure.getFieldValue("bevobj");
if (pBevelObject.isNotNull()) {
Pointer pBevelStructure = (Pointer) pBevelObject.fetchData().get(0).getFieldValue("data");
Structure bevelStructure = pBevelStructure.fetchData().get(0);
bevelObject = this.toCurve(bevelStructure, blenderContext);
} else {
int bevResol = ((Number) curveStructure.getFieldValue("bevresol")).intValue();
float extrude = ((Number) curveStructure.getFieldValue("ext1")).floatValue();
float bevelDepth = ((Number) curveStructure.getFieldValue("ext2")).floatValue();
if (bevelDepth > 0.0f) {
float handlerLength = bevelDepth / 2.0f;
List<Vector3f> conrtolPoints = new ArrayList<Vector3f>(extrude > 0.0f ? 19 : 13);
if (extrude > 0.0f) {
conrtolPoints.add(new Vector3f(-bevelDepth, 0, extrude));
conrtolPoints.add(new Vector3f(-bevelDepth, 0, -handlerLength + extrude));
conrtolPoints.add(new Vector3f(-bevelDepth, 0, handlerLength - extrude));
}
conrtolPoints.add(new Vector3f(-bevelDepth, 0, -extrude));
conrtolPoints.add(new Vector3f(-bevelDepth, 0, -handlerLength - extrude));
conrtolPoints.add(new Vector3f(-handlerLength, 0, -bevelDepth - extrude));
conrtolPoints.add(new Vector3f(0, 0, -bevelDepth - extrude));
conrtolPoints.add(new Vector3f(handlerLength, 0, -bevelDepth - extrude));
if (extrude > 0.0f) {
conrtolPoints.add(new Vector3f(bevelDepth, 0, -extrude - handlerLength));
conrtolPoints.add(new Vector3f(bevelDepth, 0, -extrude));
conrtolPoints.add(new Vector3f(bevelDepth, 0, -extrude + handlerLength));
}
conrtolPoints.add(new Vector3f(bevelDepth, 0, extrude - handlerLength));
conrtolPoints.add(new Vector3f(bevelDepth, 0, extrude));
conrtolPoints.add(new Vector3f(bevelDepth, 0, extrude + handlerLength));
conrtolPoints.add(new Vector3f(handlerLength, 0, bevelDepth + extrude));
conrtolPoints.add(new Vector3f(0, 0, bevelDepth + extrude));
conrtolPoints.add(new Vector3f(-handlerLength, 0, bevelDepth + extrude));
conrtolPoints.add(new Vector3f(-bevelDepth, 0, handlerLength + extrude));
conrtolPoints.add(new Vector3f(-bevelDepth, 0, extrude));
Spline bevelSpline = new Spline(SplineType.Bezier, conrtolPoints, 0, false);
Curve bevelCurve = new Curve(bevelSpline, bevResol);
bevelObject = new ArrayList<Geometry>(1);
bevelObject.add(new Geometry("", bevelCurve));
} else if (extrude > 0.0f) {
Spline bevelSpline = new Spline(SplineType.Linear, new Vector3f[] { new Vector3f(0, 0, -extrude), new Vector3f(0, 0, extrude) }, 1, false);
Curve bevelCurve = new Curve(bevelSpline, bevResol);
bevelObject = new ArrayList<Geometry>(1);
bevelObject.add(new Geometry("", bevelCurve));
}
}
// getting taper object
Spline taperObject = null;
Pointer pTaperObject = (Pointer) curveStructure.getFieldValue("taperobj");
if (bevelObject != null && pTaperObject.isNotNull()) {
Pointer pTaperStructure = (Pointer) pTaperObject.fetchData().get(0).getFieldValue("data");
Structure taperStructure = pTaperStructure.fetchData().get(0);
taperObject = this.loadTaperObject(taperStructure);
}
Vector3f loc = this.getLoc(curveStructure);
// creating the result curves
List<Geometry> result = new ArrayList<Geometry>(nurbs.size());
for (Entry<Number, List<Structure>> nurbEntry : nurbs.entrySet()) {
for (Structure nurb : nurbEntry.getValue()) {
int type = ((Number) nurb.getFieldValue("type")).intValue();
List<Geometry> nurbGeoms = null;
if ((type & 0x01) != 0) {// Bezier curve
nurbGeoms = this.loadBezierCurve(loc, nurb, bevelObject, taperObject, blenderContext);
} else if ((type & 0x04) != 0) {// NURBS
nurbGeoms = this.loadNurb(loc, nurb, bevelObject, taperObject, blenderContext);
}
if (nurbGeoms != null) {// setting the name and assigning materials
for (Geometry nurbGeom : nurbGeoms) {
if (materialContexts != null) {
materialContexts[nurbEntry.getKey().intValue()].applyMaterial(nurbGeom, curveStructure.getOldMemoryAddress(), null, blenderContext);
} else {
nurbGeom.setMaterial(defaultMaterial);
}
nurbGeom.setName(name);
result.add(nurbGeom);
}
}
}
}
// reading custom properties
if (blenderContext.getBlenderKey().isLoadObjectProperties() && result.size() > 0) {
Properties properties = this.loadProperties(curveStructure, blenderContext);
// the loaded property is a group property, so we need to get each value and set it to every geometry of the curve
if (properties != null && properties.getValue() != null) {
for(Geometry geom : result) {
this.applyProperties(geom, properties);
}
}
}
return result;
}
/**
* This method loads the bezier curve.
* @param loc
* the translation of the curve
* @param nurb
* the nurb structure
* @param bevelObject
* the bevel object
* @param taperObject
* the taper object
* @param blenderContext
* the blender context
* @return a list of geometries representing the curves
* @throws BlenderFileException
* an exception is thrown when there are problems with the blender file
*/
protected List<Geometry> loadBezierCurve(Vector3f loc, Structure nurb, List<Geometry> bevelObject, Spline taperObject, BlenderContext blenderContext) throws BlenderFileException {
Pointer pBezierTriple = (Pointer) nurb.getFieldValue("bezt");
List<Geometry> result = new ArrayList<Geometry>();
if (pBezierTriple.isNotNull()) {
boolean smooth = (((Number) nurb.getFlatFieldValue("flag")).intValue() & 0x01) != 0;
int resolution = ((Number) nurb.getFieldValue("resolu")).intValue();
boolean cyclic = (((Number) nurb.getFieldValue("flagu")).intValue() & 0x01) != 0;
// creating the curve object
BezierCurve bezierCurve = new BezierCurve(0, pBezierTriple.fetchData(), 3);
List<Vector3f> controlPoints = bezierCurve.getControlPoints();
if (fixUpAxis) {
for (Vector3f v : controlPoints) {
float y = v.y;
v.y = v.z;
v.z = -y;
}
}
if (bevelObject != null && taperObject == null) {// create taper object using the scales of the bezier triple
int triplesCount = controlPoints.size() / 3;
List<Vector3f> taperControlPoints = new ArrayList<Vector3f>(triplesCount);
for (int i = 0; i < triplesCount; ++i) {
taperControlPoints.add(new Vector3f(controlPoints.get(i * 3 + 1).x, (float)bezierCurve.getRadius(i), 0));
}
taperObject = new Spline(SplineType.Linear, taperControlPoints, 0, false);
}
if (cyclic) {
// copy the first three points at the end
for (int i = 0; i < 3; ++i) {
controlPoints.add(controlPoints.get(i));
}
}
// removing the first and last handles
controlPoints.remove(0);
controlPoints.remove(controlPoints.size() - 1);
// creating curve
Spline spline = new Spline(SplineType.Bezier, controlPoints, 0, false);
Curve curve = new Curve(spline, resolution);
if (bevelObject == null) {// creating a normal curve
Geometry curveGeometry = new Geometry(null, curve);
result.add(curveGeometry);
// TODO: use front and back flags; surface excluding algorithm for bezier circles should be added
} else {// creating curve with bevel and taper shape
result = this.applyBevelAndTaper(curve, bevelObject, taperObject, smooth, blenderContext);
}
}
return result;
}
/**
* This method loads the NURBS curve or surface.
* @param loc
* object's location
* @param nurb
* the NURBS data structure
* @param bevelObject
* the bevel object to be applied
* @param taperObject
* the taper object to be applied
* @param blenderContext
* the blender context
* @return a list of geometries that represents the loaded NURBS curve or surface
* @throws BlenderFileException
* an exception is throw when problems with blender loaded data occurs
*/
@SuppressWarnings("unchecked")
protected List<Geometry> loadNurb(Vector3f loc, Structure nurb, List<Geometry> bevelObject, Spline taperObject, BlenderContext blenderContext) throws BlenderFileException {
// loading the knots
List<Float>[] knots = new List[2];
Pointer[] pKnots = new Pointer[] { (Pointer) nurb.getFieldValue("knotsu"), (Pointer) nurb.getFieldValue("knotsv") };
for (int i = 0; i < knots.length; ++i) {
if (pKnots[i].isNotNull()) {
FileBlockHeader fileBlockHeader = blenderContext.getFileBlock(pKnots[i].getOldMemoryAddress());
BlenderInputStream blenderInputStream = blenderContext.getInputStream();
blenderInputStream.setPosition(fileBlockHeader.getBlockPosition());
int knotsAmount = fileBlockHeader.getCount() * fileBlockHeader.getSize() / 4;
knots[i] = new ArrayList<Float>(knotsAmount);
for (int j = 0; j < knotsAmount; ++j) {
knots[i].add(Float.valueOf(blenderInputStream.readFloat()));
}
}
}
// loading the flags and orders (basis functions degrees)
int flagU = ((Number) nurb.getFieldValue("flagu")).intValue();
int flagV = ((Number) nurb.getFieldValue("flagv")).intValue();
int orderU = ((Number) nurb.getFieldValue("orderu")).intValue();
int orderV = ((Number) nurb.getFieldValue("orderv")).intValue();
// loading control points and their weights
int pntsU = ((Number) nurb.getFieldValue("pntsu")).intValue();
int pntsV = ((Number) nurb.getFieldValue("pntsv")).intValue();
List<Structure> bPoints = ((Pointer) nurb.getFieldValue("bp")).fetchData();
List<List<Vector4f>> controlPoints = new ArrayList<List<Vector4f>>(pntsV);
for (int i = 0; i < pntsV; ++i) {
List<Vector4f> uControlPoints = new ArrayList<Vector4f>(pntsU);
for (int j = 0; j < pntsU; ++j) {
DynamicArray<Float> vec = (DynamicArray<Float>) bPoints.get(j + i * pntsU).getFieldValue("vec");
if (fixUpAxis) {
uControlPoints.add(new Vector4f(vec.get(0).floatValue(), vec.get(2).floatValue(), -vec.get(1).floatValue(), vec.get(3).floatValue()));
} else {
uControlPoints.add(new Vector4f(vec.get(0).floatValue(), vec.get(1).floatValue(), vec.get(2).floatValue(), vec.get(3).floatValue()));
}
}
if ((flagU & 0x01) != 0) {
for (int k = 0; k < orderU - 1; ++k) {
uControlPoints.add(uControlPoints.get(k));
}
}
controlPoints.add(uControlPoints);
}
if ((flagV & 0x01) != 0) {
for (int k = 0; k < orderV - 1; ++k) {
controlPoints.add(controlPoints.get(k));
}
}
int resolu = ((Number) nurb.getFieldValue("resolu")).intValue() + 1;
List<Geometry> result;
if (knots[1] == null) {// creating the curve
Spline nurbSpline = new Spline(controlPoints.get(0), knots[0]);
Curve nurbCurve = new Curve(nurbSpline, resolu);
if (bevelObject != null) {
result = this.applyBevelAndTaper(nurbCurve, bevelObject, taperObject, true, blenderContext);// TODO: smooth
} else {
result = new ArrayList<Geometry>(1);
Geometry nurbGeometry = new Geometry("", nurbCurve);
result.add(nurbGeometry);
}
} else {// creating the nurb surface
int resolv = ((Number) nurb.getFieldValue("resolv")).intValue() + 1;
Surface nurbSurface = Surface.createNurbsSurface(controlPoints, knots, resolu, resolv, orderU, orderV);
Geometry nurbGeometry = new Geometry("", nurbSurface);
result = new ArrayList<Geometry>(1);
result.add(nurbGeometry);
}
return result;
}
/**
* The method computes the taper scale on the given point on the curve.
*
* @param taper
* the taper object that defines the scale
* @param percent
* the percent of the 'road' along the curve
* @return scale on the pointed place along the curve
*/
protected float getTaperScale(Spline taper, float percent) {
if (taper == null) {
return 1;// return scale = 1 if no taper is applied
}
percent = FastMath.clamp(percent, 0, 1);
List<Float> segmentLengths = taper.getSegmentsLength();
float percentLength = taper.getTotalLength() * percent;
float partLength = 0;
int i;
for (i = 0; i < segmentLengths.size(); ++i) {
partLength += segmentLengths.get(i);
if (partLength > percentLength) {
partLength -= segmentLengths.get(i);
percentLength -= partLength;
percent = percentLength / segmentLengths.get(i);
break;
}
}
// do not cross the line :)
if (percent >= 1) {
percent = 1;
--i;
}
if (taper.getType() == SplineType.Bezier) {
i *= 3;
}
return taper.interpolate(percent, i, null).y;
}
/**
* This method applies bevel and taper objects to the curve.
* @param curve
* the curve we apply the objects to
* @param bevelObject
* the bevel object
* @param taperObject
* the taper object
* @param smooth
* the smooth flag
* @param blenderContext
* the blender context
* @return a list of geometries representing the beveled and/or tapered curve
*/
protected List<Geometry> applyBevelAndTaper(Curve curve, List<Geometry> bevelObject, Spline taperObject, boolean smooth, BlenderContext blenderContext) {
Vector3f[] curvePoints = BufferUtils.getVector3Array(curve.getFloatBuffer(Type.Position));
Vector3f subtractResult = new Vector3f();
float curveLength = curve.getLength();
FloatBuffer[] vertexBuffers = new FloatBuffer[bevelObject.size()];
FloatBuffer[] normalBuffers = new FloatBuffer[bevelObject.size()];
IndexBuffer[] indexBuffers = new IndexBuffer[bevelObject.size()];
for (int geomIndex = 0; geomIndex < bevelObject.size(); ++geomIndex) {
Mesh mesh = bevelObject.get(geomIndex).getMesh();
Vector3f[] positions = BufferUtils.getVector3Array(mesh.getFloatBuffer(Type.Position));
Vector3f[] bevelPoints = this.transformToFirstLineOfBevelPoints(positions, curvePoints[0], curvePoints[1]);
List<Vector3f[]> bevels = new ArrayList<Vector3f[]>(curvePoints.length);
bevels.add(bevelPoints);
vertexBuffers[geomIndex] = BufferUtils.createFloatBuffer(bevelPoints.length * 3 * curvePoints.length * (smooth ? 1 : 6));
for (int i = 1; i < curvePoints.length - 1; ++i) {
bevelPoints = this.transformBevel(bevelPoints, curvePoints[i - 1], curvePoints[i], curvePoints[i + 1]);
bevels.add(bevelPoints);
}
bevelPoints = this.transformBevel(bevelPoints, curvePoints[curvePoints.length - 2], curvePoints[curvePoints.length - 1], null);
bevels.add(bevelPoints);
if (bevels.size() > 2) {
// changing the first and last bevel so that they are parallel to their neighbours (blender works this way)
// notice this implicates that the distances of every corresponding point in th two bevels must be identical and
// equal to the distance between the points on curve that define the bevel position
// so instead doing complicated rotations on each point we will simply properly translate each of them
int[][] pointIndexes = new int[][] { { 0, 1 }, { curvePoints.length - 1, curvePoints.length - 2 } };
for (int[] indexes : pointIndexes) {
float distance = curvePoints[indexes[1]].subtract(curvePoints[indexes[0]], subtractResult).length();
Vector3f[] bevel = bevels.get(indexes[0]);
Vector3f[] nextBevel = bevels.get(indexes[1]);
for (int i = 0; i < bevel.length; ++i) {
float d = bevel[i].subtract(nextBevel[i], subtractResult).length();
subtractResult.normalizeLocal().multLocal(distance - d);
bevel[i].addLocal(subtractResult);
}
}
}
// apply scales to the bevels
float lengthAlongCurve = 0;
for (int i = 0; i < curvePoints.length; ++i) {
if (i > 0) {
lengthAlongCurve += curvePoints[i].subtract(curvePoints[i - 1], subtractResult).length();
}
float taperScale = this.getTaperScale(taperObject, i == 0 ? 0 : lengthAlongCurve / curveLength);
this.applyScale(bevels.get(i), curvePoints[i], taperScale);
}
if (smooth) {// add everything to the buffer
for (Vector3f[] bevel : bevels) {
for (Vector3f d : bevel) {
vertexBuffers[geomIndex].put(d.x);
vertexBuffers[geomIndex].put(d.y);
vertexBuffers[geomIndex].put(d.z);
}
}
} else {// add vertices to the buffer duplicating them so that every vertex belongs only to a single triangle
for (int i = 0; i < curvePoints.length - 1; ++i) {
for (int j = 0; j < bevelPoints.length - 1; ++j) {
// first triangle
vertexBuffers[geomIndex].put(bevels.get(i)[j].x);
vertexBuffers[geomIndex].put(bevels.get(i)[j].y);
vertexBuffers[geomIndex].put(bevels.get(i)[j].z);
vertexBuffers[geomIndex].put(bevels.get(i)[j + 1].x);
vertexBuffers[geomIndex].put(bevels.get(i)[j + 1].y);
vertexBuffers[geomIndex].put(bevels.get(i)[j + 1].z);
vertexBuffers[geomIndex].put(bevels.get(i + 1)[j].x);
vertexBuffers[geomIndex].put(bevels.get(i + 1)[j].y);
vertexBuffers[geomIndex].put(bevels.get(i + 1)[j].z);
public CurvesTemporalMesh toCurve(Structure curveStructure, BlenderContext blenderContext) throws BlenderFileException {
CurvesTemporalMesh result = new CurvesTemporalMesh(curveStructure, blenderContext);
// second triangle
vertexBuffers[geomIndex].put(bevels.get(i)[j + 1].x);
vertexBuffers[geomIndex].put(bevels.get(i)[j + 1].y);
vertexBuffers[geomIndex].put(bevels.get(i)[j + 1].z);
vertexBuffers[geomIndex].put(bevels.get(i + 1)[j + 1].x);
vertexBuffers[geomIndex].put(bevels.get(i + 1)[j + 1].y);
vertexBuffers[geomIndex].put(bevels.get(i + 1)[j + 1].z);
vertexBuffers[geomIndex].put(bevels.get(i + 1)[j].x);
vertexBuffers[geomIndex].put(bevels.get(i + 1)[j].y);
vertexBuffers[geomIndex].put(bevels.get(i + 1)[j].z);
}
}
}
indexBuffers[geomIndex] = this.generateIndexes(bevelPoints.length, curvePoints.length, smooth);
normalBuffers[geomIndex] = this.generateNormals(indexBuffers[geomIndex], vertexBuffers[geomIndex], smooth);
if (blenderContext.getBlenderKey().isLoadObjectProperties()) {
LOGGER.fine("Reading custom properties.");
result.setProperties(this.loadProperties(curveStructure, blenderContext));
}
// creating and returning the result
List<Geometry> result = new ArrayList<Geometry>(vertexBuffers.length);
Float oneReferenceToCurveLength = new Float(curveLength);// its important for array modifier to use one reference here
for (int i = 0; i < vertexBuffers.length; ++i) {
Mesh mesh = new Mesh();
mesh.setBuffer(Type.Position, 3, vertexBuffers[i]);
if (indexBuffers[i].getBuffer() instanceof IntBuffer) {
mesh.setBuffer(Type.Index, 3, (IntBuffer) indexBuffers[i].getBuffer());
} else {
mesh.setBuffer(Type.Index, 3, (ShortBuffer) indexBuffers[i].getBuffer());
}
mesh.setBuffer(Type.Normal, 3, normalBuffers[i]);
Geometry g = new Geometry("g" + i, mesh);
g.setUserData("curveLength", oneReferenceToCurveLength);
g.updateModelBound();
result.add(g);
}
return result;
}
/**
* the method applies scale for the given bevel points. The points table is
* being modified so expect ypur result there.
*
* @param points
* the bevel points
* @param centerPoint
* the center point of the bevel
* @param scale
* the scale to be applied
*/
private void applyScale(Vector3f[] points, Vector3f centerPoint, float scale) {
Vector3f taperScaleVector = new Vector3f();
for (Vector3f p : points) {
taperScaleVector.set(centerPoint).subtractLocal(p).multLocal(1 - scale);
p.addLocal(taperScaleVector);
}
}
/**
* The method generates normal buffer for the created mesh of the curve.
*
* @param indexes
* the indexes of the mesh points
* @param points
* the mesh's points
* @param smooth
* the flag indicating if the result is to be smooth or solid
* @return normals buffer for the mesh
*/
private FloatBuffer generateNormals(IndexBuffer indexes, FloatBuffer points, boolean smooth) {
Map<Integer, Vector3f> normalMap = new TreeMap<Integer, Vector3f>();
Vector3f[] allVerts = BufferUtils.getVector3Array(points);
for (int i = 0; i < indexes.size(); i += 3) {
int index1 = indexes.get(i);
int index2 = indexes.get(i + 1);
int index3 = indexes.get(i + 2);
Vector3f n = FastMath.computeNormal(allVerts[index1], allVerts[index2], allVerts[index3]);
this.addNormal(n, normalMap, smooth, index1, index2, index3);
}
FloatBuffer normals = BufferUtils.createFloatBuffer(normalMap.size() * 3);
for (Entry<Integer, Vector3f> entry : normalMap.entrySet()) {
normals.put(entry.getValue().x);
normals.put(entry.getValue().y);
normals.put(entry.getValue().z);
}
return normals;
}
/**
* The amount of faces in the final mesh is the amount of edges in the bevel
* curve (which is less by 1 than its number of vertices) multiplied by 2
* (because each edge has two faces assigned on both sides) and multiplied
* by the amount of bevel curve repeats which is equal to the amount of
* vertices on the target curve finally we need to subtract the bevel edges
* amount 2 times because the border edges have only one face attached and
* at last multiply everything by 3 because each face needs 3 indexes to be
* described
*
* @param bevelShapeVertexCount
* amount of points in bevel shape
* @param bevelRepeats
* amount of bevel shapes along the curve
* @param smooth
* the smooth flag
* @return index buffer for the mesh
*/
private IndexBuffer generateIndexes(int bevelShapeVertexCount, int bevelRepeats, boolean smooth) {
int putIndex = 0;
if (smooth) {
int indexBufferSize = (bevelRepeats - 1) * (bevelShapeVertexCount - 1) * 6;
IndexBuffer result = IndexBuffer.createIndexBuffer(indexBufferSize, indexBufferSize);
for (int i = 0; i < bevelRepeats - 1; ++i) {
for (int j = 0; j < bevelShapeVertexCount - 1; ++j) {
result.put(putIndex++, i * bevelShapeVertexCount + j);
result.put(putIndex++, i * bevelShapeVertexCount + j + 1);
result.put(putIndex++, (i + 1) * bevelShapeVertexCount + j);
result.put(putIndex++, i * bevelShapeVertexCount + j + 1);
result.put(putIndex++, (i + 1) * bevelShapeVertexCount + j + 1);
result.put(putIndex++, (i + 1) * bevelShapeVertexCount + j);
}
}
return result;
} else {
// every pair of bevel vertices belongs to two triangles
// we have the same amount of pairs as the amount of vertices in bevel
// so the amount of triangles is: bevelShapeVertexCount * 2 * (bevelRepeats - 1)
// and this gives the amount of vertices in non smooth shape as below ...
int indexBufferSize = bevelShapeVertexCount * bevelRepeats * 6;// 6 = 2 * 3 where 2 is stated above and 3 is the count of vertices for each triangle
IndexBuffer result = IndexBuffer.createIndexBuffer(indexBufferSize, indexBufferSize);
for (int i = 0; i < indexBufferSize; ++i) {
result.put(putIndex++, i);
}
return result;
}
}
/**
* The method transforms the bevel along the curve.
*
@ -689,7 +92,7 @@ public class CurvesHelper extends AbstractBlenderHelper {
* next curve point
* @return points of transformed bevel
*/
private Vector3f[] transformBevel(Vector3f[] bevel, Vector3f prevPos, Vector3f currPos, Vector3f nextPos) {
protected Vector3f[] transformBevel(Vector3f[] bevel, Vector3f prevPos, Vector3f currPos, Vector3f nextPos) {
bevel = bevel.clone();
// currPos and directionVector define the line in 3D space
@ -736,103 +139,21 @@ public class CurvesHelper extends AbstractBlenderHelper {
* the second curve's point
* @return points of transformed bevel
*/
private Vector3f[] transformToFirstLineOfBevelPoints(Vector3f[] startingLinePoints, Vector3f firstCurvePoint, Vector3f secondCurvePoint) {
protected Vector3f[] transformToFirstLineOfBevelPoints(Vector3f[] startingLinePoints, Vector3f firstCurvePoint, Vector3f secondCurvePoint) {
Vector3f planeNormal = secondCurvePoint.subtract(firstCurvePoint).normalizeLocal();
float angle = FastMath.acos(planeNormal.dot(Vector3f.UNIT_Y));
planeNormal.crossLocal(Vector3f.UNIT_Y).normalizeLocal();// planeNormal is the rotation axis now
Quaternion pointRotation = new Quaternion();
pointRotation.fromAngleAxis(angle, planeNormal);
float angle = FastMath.acos(planeNormal.dot(Vector3f.UNIT_X));
Vector3f rotationVector = Vector3f.UNIT_X.cross(planeNormal).normalizeLocal();
Matrix4f m = new Matrix4f();
m.setRotationQuaternion(pointRotation);
m.setRotationQuaternion(new Quaternion().fromAngleAxis(angle, rotationVector));
m.setTranslation(firstCurvePoint);
float[] temp = new float[] { 0, 0, 0, 1 };
Vector3f temp = new Vector3f();
Vector3f[] verts = new Vector3f[startingLinePoints.length];
for (int j = 0; j < verts.length; ++j) {
temp[0] = startingLinePoints[j].x;
temp[1] = startingLinePoints[j].y;
temp[2] = startingLinePoints[j].z;
temp = m.mult(temp);// the result is stored in the array
if (fixUpAxis) {
verts[j] = new Vector3f(temp[0], -temp[2], temp[1]);
} else {
verts[j] = new Vector3f(temp[0], temp[1], temp[2]);
}
for (int i = 0; i < verts.length; ++i) {
verts[i] = m.mult(startingLinePoints[i], temp).clone();
}
return verts;
}
/**
* The method adds a normal to the given map. Depending in the smooth factor
* it is either merged with the revious normal or not.
*
* @param normalToAdd
* the normal vector to be added
* @param normalMap
* the normal map where we add vectors
* @param smooth
* the smooth flag
* @param indexes
* the indexes of the normals
*/
private void addNormal(Vector3f normalToAdd, Map<Integer, Vector3f> normalMap, boolean smooth, int... indexes) {
for (int index : indexes) {
Vector3f n = normalMap.get(index);
if (!smooth || n == null) {
normalMap.put(index, normalToAdd.clone());
} else {
n.addLocal(normalToAdd).normalizeLocal();
}
}
}
/**
* This method loads the taper object.
*
* @param taperStructure
* the taper structure
* @return the taper object
* @throws BlenderFileException
*/
protected Spline loadTaperObject(Structure taperStructure) throws BlenderFileException {
// reading nurbs
List<Structure> nurbStructures = ((Structure) taperStructure.getFieldValue("nurb")).evaluateListBase();
for (Structure nurb : nurbStructures) {
Pointer pBezierTriple = (Pointer) nurb.getFieldValue("bezt");
if (pBezierTriple.isNotNull()) {
// creating the curve object
BezierCurve bezierCurve = new BezierCurve(0, pBezierTriple.fetchData(), 3);
List<Vector3f> controlPoints = bezierCurve.getControlPoints();
// removing the first and last handles
controlPoints.remove(0);
controlPoints.remove(controlPoints.size() - 1);
// return the first taper curve that has more than 3 control points
if (controlPoints.size() > 3) {
return new Spline(SplineType.Bezier, controlPoints, 0, false);
}
}
}
return null;
}
/**
* This method returns the translation of the curve. The UP axis is taken
* into account here.
*
* @param curveStructure
* the curve structure
* @return curve translation
*/
@SuppressWarnings("unchecked")
protected Vector3f getLoc(Structure curveStructure) {
DynamicArray<Number> locArray = (DynamicArray<Number>) curveStructure.getFieldValue("loc");
if (fixUpAxis) {
return new Vector3f(locArray.get(0).floatValue(), locArray.get(1).floatValue(), -locArray.get(2).floatValue());
} else {
return new Vector3f(locArray.get(0).floatValue(), locArray.get(2).floatValue(), locArray.get(1).floatValue());
}
}
}

@ -0,0 +1,890 @@
package com.jme3.scene.plugins.blender.curves;
import java.nio.FloatBuffer;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.TreeMap;
import java.util.logging.Logger;
import com.jme3.material.RenderState.FaceCullMode;
import com.jme3.math.FastMath;
import com.jme3.math.Spline;
import com.jme3.math.Spline.SplineType;
import com.jme3.math.Vector3f;
import com.jme3.math.Vector4f;
import com.jme3.scene.VertexBuffer.Type;
import com.jme3.scene.mesh.IndexBuffer;
import com.jme3.scene.plugins.blender.BlenderContext;
import com.jme3.scene.plugins.blender.file.BlenderFileException;
import com.jme3.scene.plugins.blender.file.BlenderInputStream;
import com.jme3.scene.plugins.blender.file.DynamicArray;
import com.jme3.scene.plugins.blender.file.FileBlockHeader;
import com.jme3.scene.plugins.blender.file.Pointer;
import com.jme3.scene.plugins.blender.file.Structure;
import com.jme3.scene.plugins.blender.materials.MaterialContext;
import com.jme3.scene.plugins.blender.materials.MaterialHelper;
import com.jme3.scene.plugins.blender.meshes.Edge;
import com.jme3.scene.plugins.blender.meshes.Face;
import com.jme3.scene.plugins.blender.meshes.TemporalMesh;
import com.jme3.scene.shape.Curve;
import com.jme3.scene.shape.Surface;
import com.jme3.util.BufferUtils;
/**
* A temporal mesh for curves and surfaces. It works in similar way as TemporalMesh for meshes.
* It prepares all neccessary lines and faces and allows to apply modifiers just like in regular temporal mesh.
*
* @author Marcin Roguski (Kaelthas)
*/
public class CurvesTemporalMesh extends TemporalMesh {
private static final Logger LOGGER = Logger.getLogger(CurvesTemporalMesh.class.getName());
private static final int TYPE_BEZIER = 0x0001;
private static final int TYPE_NURBS = 0x0004;
private static final int FLAG_3D = 0x0001;
private static final int FLAG_FRONT = 0x0002;
private static final int FLAG_BACK = 0x0004;
private static final int FLAG_FILL_CAPS = 0x4000;
private static final int FLAG_SMOOTH = 0x0001;
protected CurvesHelper curvesHelper;
protected boolean is2D;
protected boolean isFront;
protected boolean isBack;
protected boolean fillCaps;
protected float bevelStart;
protected float bevelEnd;
protected List<BezierLine> beziers = new ArrayList<BezierLine>();
protected CurvesTemporalMesh bevelObject;
protected CurvesTemporalMesh taperObject;
/** The scale that is used if the curve is a bevel or taper curve. */
protected Vector3f scale = new Vector3f(1, 1, 1);
/**
* The constructor creates an empty temporal mesh.
* @param blenderContext
* the blender context
* @throws BlenderFileException
* this will never be thrown here
*/
protected CurvesTemporalMesh(BlenderContext blenderContext) throws BlenderFileException {
super(null, blenderContext, false);
}
/**
* Loads the temporal mesh from the given curve structure. The mesh can be either curve or surface.
* @param curveStructure
* the structure that contains the curve/surface data
* @param blenderContext
* the blender context
* @throws BlenderFileException
* an exception is thrown when problems with reading occur
*/
public CurvesTemporalMesh(Structure curveStructure, BlenderContext blenderContext) throws BlenderFileException {
this(curveStructure, new Vector3f(1, 1, 1), true, blenderContext);
}
/**
* Loads the temporal mesh from the given curve structure. The mesh can be either curve or surface.
* @param curveStructure
* the structure that contains the curve/surface data
* @param scale
* the scale used if the current curve is used as a bevel curve
* @param loadBevelAndTaper indicates if bevel and taper should be loaded (this is not needed for curves that are loaded to be used as bevel and taper)
* @param blenderContext
* the blender context
* @throws BlenderFileException
* an exception is thrown when problems with reading occur
*/
@SuppressWarnings("unchecked")
private CurvesTemporalMesh(Structure curveStructure, Vector3f scale, boolean loadBevelAndTaper, BlenderContext blenderContext) throws BlenderFileException {
super(curveStructure, blenderContext, false);
name = curveStructure.getName();
curvesHelper = blenderContext.getHelper(CurvesHelper.class);
this.scale = scale;
int flag = ((Number) curveStructure.getFieldValue("flag")).intValue();
is2D = (flag & FLAG_3D) == 0;
if (is2D) {
// TODO: add support for 3D flag
LOGGER.warning("2D flag not yet supported for curves!");
}
isFront = (flag & FLAG_FRONT) != 0;
isBack = (flag & FLAG_BACK) != 0;
fillCaps = (flag & FLAG_FILL_CAPS) != 0;
bevelStart = ((Number) curveStructure.getFieldValue("bevfac1", 0)).floatValue();
bevelEnd = ((Number) curveStructure.getFieldValue("bevfac2", 1)).floatValue();
if (bevelStart > bevelEnd) {
float temp = bevelStart;
bevelStart = bevelEnd;
bevelEnd = temp;
}
LOGGER.fine("Reading nurbs (and sorting them by material).");
Map<Number, List<Structure>> nurbs = new HashMap<Number, List<Structure>>();
List<Structure> nurbStructures = ((Structure) curveStructure.getFieldValue("nurb")).evaluateListBase();
for (Structure nurb : nurbStructures) {
Number matNumber = (Number) nurb.getFieldValue("mat_nr");
List<Structure> nurbList = nurbs.get(matNumber);
if (nurbList == null) {
nurbList = new ArrayList<Structure>();
nurbs.put(matNumber, nurbList);
}
nurbList.add(nurb);
}
LOGGER.fine("Getting materials.");
MaterialHelper materialHelper = blenderContext.getHelper(MaterialHelper.class);
materials = materialHelper.getMaterials(curveStructure, blenderContext);
if (materials != null) {
for (MaterialContext materialContext : materials) {
materialContext.setFaceCullMode(FaceCullMode.Off);
}
}
LOGGER.fine("Getting or creating bevel object.");
bevelObject = loadBevelAndTaper ? this.loadBevelObject(curveStructure) : null;
LOGGER.fine("Getting taper object.");
Pointer pTaperObject = (Pointer) curveStructure.getFieldValue("taperobj");
if (bevelObject != null && pTaperObject.isNotNull()) {
Structure taperObjectStructure = pTaperObject.fetchData().get(0);
DynamicArray<Number> scaleArray = (DynamicArray<Number>) taperObjectStructure.getFieldValue("size");
scale = blenderContext.getBlenderKey().isFixUpAxis() ? new Vector3f(scaleArray.get(0).floatValue(), scaleArray.get(1).floatValue(), scaleArray.get(2).floatValue()) : new Vector3f(scaleArray.get(0).floatValue(), scaleArray.get(2).floatValue(), scaleArray.get(1).floatValue());
Pointer pTaperStructure = (Pointer) taperObjectStructure.getFieldValue("data");
Structure taperStructure = pTaperStructure.fetchData().get(0);
taperObject = new CurvesTemporalMesh(taperStructure, blenderContext);
}
LOGGER.fine("Creating the result curves.");
for (Entry<Number, List<Structure>> nurbEntry : nurbs.entrySet()) {
for (Structure nurb : nurbEntry.getValue()) {
int type = ((Number) nurb.getFieldValue("type")).intValue();
if ((type & TYPE_BEZIER) != 0) {
this.loadBezierCurve(nurb, nurbEntry.getKey().intValue());
} else if ((type & TYPE_NURBS) != 0) {
this.loadNurbSurface(nurb, nurbEntry.getKey().intValue());
} else {
throw new BlenderFileException("Unknown curve type: " + type);
}
}
}
if (bevelObject != null && beziers.size() > 0) {
this.append(this.applyBevelAndTaper(this, bevelObject, taperObject, blenderContext));
} else {
int originalVerticesAmount = vertices.size();
for (BezierLine bezierLine : beziers) {
vertices.add(bezierLine.vertices[0]);
Vector3f v = bezierLine.vertices[1].subtract(bezierLine.vertices[0]).normalizeLocal();
float temp = v.x;
v.x = -v.y;
v.y = temp;
v.z = 0;
normals.add(v);// this will be smoothed in the next iteration
for (int i = 1; i < bezierLine.vertices.length; ++i) {
vertices.add(bezierLine.vertices[i]);
edges.add(new Edge(originalVerticesAmount + i - 1, originalVerticesAmount + i, 0, false, this));
// generating normal for vertex at 'i'
v = bezierLine.vertices[i].subtract(bezierLine.vertices[i - 1]).normalizeLocal();
temp = v.x;
v.x = -v.y;
v.y = temp;
v.z = 0;
// make the previous normal smooth
normals.get(i - 1).addLocal(v).multLocal(0.5f).normalizeLocal();
normals.add(v);// this will be smoothed in the next iteration
}
}
}
}
/**
* The method computes the value of a point at the certain relational distance from its beggining.
* @param alongRatio
* the relative distance along the curve; should be a value between 0 and 1 inclusive;
* if the value exceeds the boundaries it is truncated to them
* @return computed value along the curve
*/
private Vector3f getValueAlongCurve(float alongRatio) {
alongRatio = FastMath.clamp(alongRatio, 0, 1);
Vector3f result = new Vector3f();
float probeLength = this.getLength() * alongRatio, length = 0;
for (BezierLine bezier : beziers) {
float edgeLength = bezier.getLength();
if (length + edgeLength >= probeLength) {
float ratioAlongEdge = (probeLength - length) / edgeLength;
return bezier.getValueAlongCurve(ratioAlongEdge);
}
length += edgeLength;
}
return result;
}
/**
* @return the length of the curve
*/
private float getLength() {
float result = 0;
for (BezierLine bezier : beziers) {
result += bezier.getLength();
}
return result;
}
/**
* The methods loads the bezier curve from the given structure.
* @param nurbStructure
* the structure containing a single curve definition
* @param materialIndex
* the index of this segment's material
* @throws BlenderFileException
* an exception is thrown when problems with reading occur
*/
private void loadBezierCurve(Structure nurbStructure, int materialIndex) throws BlenderFileException {
Pointer pBezierTriple = (Pointer) nurbStructure.getFieldValue("bezt");
if (pBezierTriple.isNotNull()) {
int resolution = ((Number) nurbStructure.getFieldValue("resolu")).intValue();
boolean cyclic = (((Number) nurbStructure.getFieldValue("flagu")).intValue() & 0x01) != 0;
boolean smooth = (((Number) nurbStructure.getFieldValue("flag")).intValue() & FLAG_SMOOTH) != 0;
// creating the curve object
BezierCurve bezierCurve = new BezierCurve(0, pBezierTriple.fetchData(), 3, blenderContext.getBlenderKey().isFixUpAxis());
List<Vector3f> controlPoints = bezierCurve.getControlPoints();
if (cyclic) {
// copy the first three points at the end
for (int i = 0; i < 3; ++i) {
controlPoints.add(controlPoints.get(i));
}
}
// removing the first and last handles
controlPoints.remove(0);
controlPoints.remove(controlPoints.size() - 1);
// creating curve
Curve curve = new Curve(new Spline(SplineType.Bezier, controlPoints, 0, false), resolution);
FloatBuffer vertsBuffer = (FloatBuffer) curve.getBuffer(Type.Position).getData();
beziers.add(new BezierLine(BufferUtils.getVector3Array(vertsBuffer), materialIndex, smooth, cyclic));
}
}
/**
* This method loads the NURBS curve or surface.
* @param nurb
* the NURBS data structure
* @throws BlenderFileException
* an exception is thrown when problems with reading occur
*/
@SuppressWarnings("unchecked")
private void loadNurbSurface(Structure nurb, int materialIndex) throws BlenderFileException {
// loading the knots
List<Float>[] knots = new List[2];
Pointer[] pKnots = new Pointer[] { (Pointer) nurb.getFieldValue("knotsu"), (Pointer) nurb.getFieldValue("knotsv") };
for (int i = 0; i < knots.length; ++i) {
if (pKnots[i].isNotNull()) {
FileBlockHeader fileBlockHeader = blenderContext.getFileBlock(pKnots[i].getOldMemoryAddress());
BlenderInputStream blenderInputStream = blenderContext.getInputStream();
blenderInputStream.setPosition(fileBlockHeader.getBlockPosition());
int knotsAmount = fileBlockHeader.getCount() * fileBlockHeader.getSize() / 4;
knots[i] = new ArrayList<Float>(knotsAmount);
for (int j = 0; j < knotsAmount; ++j) {
knots[i].add(Float.valueOf(blenderInputStream.readFloat()));
}
}
}
// loading the flags and orders (basis functions degrees)
int flag = ((Number) nurb.getFieldValue("flag")).intValue();
boolean smooth = (flag & FLAG_SMOOTH) != 0;
int flagU = ((Number) nurb.getFieldValue("flagu")).intValue();
int flagV = ((Number) nurb.getFieldValue("flagv")).intValue();
int orderU = ((Number) nurb.getFieldValue("orderu")).intValue();
int orderV = ((Number) nurb.getFieldValue("orderv")).intValue();
// loading control points and their weights
int pntsU = ((Number) nurb.getFieldValue("pntsu")).intValue();
int pntsV = ((Number) nurb.getFieldValue("pntsv")).intValue();
List<Structure> bPoints = ((Pointer) nurb.getFieldValue("bp")).fetchData();
List<List<Vector4f>> controlPoints = new ArrayList<List<Vector4f>>(pntsV);
for (int i = 0; i < pntsV; ++i) {
List<Vector4f> uControlPoints = new ArrayList<Vector4f>(pntsU);
for (int j = 0; j < pntsU; ++j) {
DynamicArray<Float> vec = (DynamicArray<Float>) bPoints.get(j + i * pntsU).getFieldValue("vec");
if (blenderContext.getBlenderKey().isFixUpAxis()) {
uControlPoints.add(new Vector4f(vec.get(0).floatValue(), vec.get(2).floatValue(), -vec.get(1).floatValue(), vec.get(3).floatValue()));
} else {
uControlPoints.add(new Vector4f(vec.get(0).floatValue(), vec.get(1).floatValue(), vec.get(2).floatValue(), vec.get(3).floatValue()));
}
}
if ((flagU & 0x01) != 0) {
for (int k = 0; k < orderU - 1; ++k) {
uControlPoints.add(uControlPoints.get(k));
}
}
controlPoints.add(uControlPoints);
}
if ((flagV & 0x01) != 0) {
for (int k = 0; k < orderV - 1; ++k) {
controlPoints.add(controlPoints.get(k));
}
}
int originalVerticesAmount = vertices.size();
int resolu = ((Number) nurb.getFieldValue("resolu")).intValue();
if (knots[1] == null) {// creating the NURB curve
Curve curve = new Curve(new Spline(controlPoints.get(0), knots[0]), resolu);
FloatBuffer vertsBuffer = (FloatBuffer) curve.getBuffer(Type.Position).getData();
beziers.add(new BezierLine(BufferUtils.getVector3Array(vertsBuffer), materialIndex, smooth, false));
} else {// creating the NURB surface
int resolv = ((Number) nurb.getFieldValue("resolv")).intValue();
int uSegments = resolu * controlPoints.get(0).size() - 1;
int vSegments = resolv * controlPoints.size() - 1;
Surface nurbSurface = Surface.createNurbsSurface(controlPoints, knots, uSegments, vSegments, orderU, orderV, smooth);
FloatBuffer vertsBuffer = (FloatBuffer) nurbSurface.getBuffer(Type.Position).getData();
vertices.addAll(Arrays.asList(BufferUtils.getVector3Array(vertsBuffer)));
FloatBuffer normalsBuffer = (FloatBuffer) nurbSurface.getBuffer(Type.Normal).getData();
normals.addAll(Arrays.asList(BufferUtils.getVector3Array(normalsBuffer)));
IndexBuffer indexBuffer = nurbSurface.getIndexBuffer();
for (int i = 0; i < indexBuffer.size(); i += 3) {
int index1 = indexBuffer.get(i) + originalVerticesAmount;
int index2 = indexBuffer.get(i + 1) + originalVerticesAmount;
int index3 = indexBuffer.get(i + 2) + originalVerticesAmount;
faces.add(new Face(new Integer[] { index1, index2, index3 }, smooth, materialIndex, null, null, this));
}
}
}
/**
* The method loads the bevel object that sould be applied to curve. It can either be another curve or a generated one
* based on the bevel generating parameters in blender.
* @param curveStructure
* the structure with the curve's data (the curve being loaded, NOT the bevel curve)
* @return the curve's bevel object
* @throws BlenderFileException
* an exception is thrown when problems with reading occur
*/
@SuppressWarnings("unchecked")
private CurvesTemporalMesh loadBevelObject(Structure curveStructure) throws BlenderFileException {
CurvesTemporalMesh bevelObject = null;
Pointer pBevelObject = (Pointer) curveStructure.getFieldValue("bevobj");
boolean cyclic = false;
if (pBevelObject.isNotNull()) {
Structure bevelObjectStructure = pBevelObject.fetchData().get(0);
DynamicArray<Number> scaleArray = (DynamicArray<Number>) bevelObjectStructure.getFieldValue("size");
Vector3f scale = blenderContext.getBlenderKey().isFixUpAxis() ? new Vector3f(scaleArray.get(0).floatValue(), scaleArray.get(1).floatValue(), scaleArray.get(2).floatValue()) : new Vector3f(scaleArray.get(0).floatValue(), scaleArray.get(2).floatValue(), scaleArray.get(1).floatValue());
Pointer pBevelStructure = (Pointer) bevelObjectStructure.getFieldValue("data");
Structure bevelStructure = pBevelStructure.fetchData().get(0);
bevelObject = new CurvesTemporalMesh(bevelStructure, scale, false, blenderContext);
// transforming the bezier lines from plane XZ to plane YZ
for (BezierLine bl : bevelObject.beziers) {
for (Vector3f v : bl.vertices) {
// casting the bezier curve orthogonally on the plane XZ (making Y = 0) and then moving the plane XZ to ZY in a way that:
// -Z => +Y and +X => +Z and +Y => +X (but because casting would make Y = 0, then we simply set X = 0)
v.y = -v.z;
v.z = v.x;
v.x = 0;
}
// bevel curves should not have repeated the first vertex at the end when they are cyclic (this is handled differently)
if (bl.isCyclic()) {
bl.removeLastVertex();
}
}
} else {
fillCaps = false;// this option is inactive in blender when there is no bevel object applied
int bevResol = ((Number) curveStructure.getFieldValue("bevresol")).intValue();
float extrude = ((Number) curveStructure.getFieldValue("ext1")).floatValue();
float bevelDepth = ((Number) curveStructure.getFieldValue("ext2")).floatValue();
float offset = ((Number) curveStructure.getFieldValue("offset", 0)).floatValue();
if (offset != 0) {
// TODO: add support for offset parameter
LOGGER.warning("Offset parameter not yet supported.");
}
Curve bevelCurve = null;
if (bevelDepth > 0.0f) {
float handlerLength = bevelDepth / 2.0f;
cyclic = !isFront && !isBack;
List<Vector3f> conrtolPoints = new ArrayList<Vector3f>();
// blenders from 2.49 to 2.52 did not pay attention to fron and back faces
// so in order to draw the scene exactly as it is in different blender versions the blender version is checked here
// when neither fron and back face is selected all version behave the same and draw full bevel around the curve
if (cyclic || blenderContext.getBlenderVersion() < 253) {
conrtolPoints.add(new Vector3f(0, -extrude - bevelDepth, 0));
conrtolPoints.add(new Vector3f(0, -extrude - bevelDepth, -handlerLength));
conrtolPoints.add(new Vector3f(0, -extrude - handlerLength, -bevelDepth));
conrtolPoints.add(new Vector3f(0, -extrude, -bevelDepth));
conrtolPoints.add(new Vector3f(0, -extrude + handlerLength, -bevelDepth));
if (extrude > 0) {
conrtolPoints.add(new Vector3f(0, extrude - handlerLength, -bevelDepth));
conrtolPoints.add(new Vector3f(0, extrude, -bevelDepth));
conrtolPoints.add(new Vector3f(0, extrude + handlerLength, -bevelDepth));
}
conrtolPoints.add(new Vector3f(0, extrude + bevelDepth, -handlerLength));
conrtolPoints.add(new Vector3f(0, extrude + bevelDepth, 0));
if (cyclic) {
conrtolPoints.add(new Vector3f(0, extrude + bevelDepth, handlerLength));
conrtolPoints.add(new Vector3f(0, extrude + handlerLength, bevelDepth));
conrtolPoints.add(new Vector3f(0, extrude, bevelDepth));
conrtolPoints.add(new Vector3f(0, extrude - handlerLength, bevelDepth));
if (extrude > 0) {
conrtolPoints.add(new Vector3f(0, -extrude + handlerLength, bevelDepth));
conrtolPoints.add(new Vector3f(0, -extrude, bevelDepth));
conrtolPoints.add(new Vector3f(0, -extrude - handlerLength, bevelDepth));
}
conrtolPoints.add(new Vector3f(0, -extrude - bevelDepth, handlerLength));
conrtolPoints.add(new Vector3f(0, -extrude - bevelDepth, 0));
}
} else {
if (extrude > 0) {
if (isBack) {
conrtolPoints.add(new Vector3f(0, -extrude - bevelDepth, 0));
conrtolPoints.add(new Vector3f(0, -extrude - bevelDepth, -handlerLength));
conrtolPoints.add(new Vector3f(0, -extrude - handlerLength, -bevelDepth));
}
conrtolPoints.add(new Vector3f(0, -extrude, -bevelDepth));
conrtolPoints.add(new Vector3f(0, -extrude + handlerLength, -bevelDepth));
conrtolPoints.add(new Vector3f(0, extrude - handlerLength, -bevelDepth));
conrtolPoints.add(new Vector3f(0, extrude, -bevelDepth));
if (isFront) {
conrtolPoints.add(new Vector3f(0, extrude + handlerLength, -bevelDepth));
conrtolPoints.add(new Vector3f(0, extrude + bevelDepth, -handlerLength));
conrtolPoints.add(new Vector3f(0, extrude + bevelDepth, 0));
}
} else {
if (isFront && isBack) {
conrtolPoints.add(new Vector3f(0, -bevelDepth, 0));
conrtolPoints.add(new Vector3f(0, -bevelDepth, -handlerLength));
conrtolPoints.add(new Vector3f(0, -handlerLength, -bevelDepth));
conrtolPoints.add(new Vector3f(0, 0, -bevelDepth));
conrtolPoints.add(new Vector3f(0, handlerLength, -bevelDepth));
conrtolPoints.add(new Vector3f(0, bevelDepth, -handlerLength));
conrtolPoints.add(new Vector3f(0, bevelDepth, 0));
} else {
if (isBack) {
conrtolPoints.add(new Vector3f(0, -bevelDepth, 0));
conrtolPoints.add(new Vector3f(0, -bevelDepth, -handlerLength));
conrtolPoints.add(new Vector3f(0, -handlerLength, -bevelDepth));
conrtolPoints.add(new Vector3f(0, 0, -bevelDepth));
} else {
conrtolPoints.add(new Vector3f(0, 0, -bevelDepth));
conrtolPoints.add(new Vector3f(0, handlerLength, -bevelDepth));
conrtolPoints.add(new Vector3f(0, bevelDepth, -handlerLength));
conrtolPoints.add(new Vector3f(0, bevelDepth, 0));
}
}
}
}
bevelCurve = new Curve(new Spline(SplineType.Bezier, conrtolPoints, 0, false), bevResol);
} else if (extrude > 0.0f) {
Spline bevelSpline = new Spline(SplineType.Linear, new Vector3f[] { new Vector3f(0, extrude, 0), new Vector3f(0, -extrude, 0) }, 1, false);
bevelCurve = new Curve(bevelSpline, bevResol);
}
if (bevelCurve != null) {
bevelObject = new CurvesTemporalMesh(blenderContext);
FloatBuffer vertsBuffer = (FloatBuffer) bevelCurve.getBuffer(Type.Position).getData();
Vector3f[] verts = BufferUtils.getVector3Array(vertsBuffer);
if (cyclic) {// get rid of the last vertex which is identical to the first one
verts = Arrays.copyOf(verts, verts.length - 1);
}
bevelObject.beziers.add(new BezierLine(verts, 0, false, cyclic));
}
}
return bevelObject;
}
private List<BezierLine> getScaledBeziers() {
if (scale.equals(Vector3f.UNIT_XYZ)) {
return beziers;
}
List<BezierLine> result = new ArrayList<BezierLine>();
for (BezierLine bezierLine : beziers) {
result.add(bezierLine.scale(scale));
}
return result;
}
/**
* This method applies bevel and taper objects to the curve.
* @param curve
* the curve we apply the objects to
* @param bevelObject
* the bevel object
* @param taperObject
* the taper object
* @param blenderContext
* the blender context
* @return a list of geometries representing the beveled and/or tapered curve
* @throws BlenderFileException
* an exception is thrown when problems with reading occur
*/
private CurvesTemporalMesh applyBevelAndTaper(CurvesTemporalMesh curve, CurvesTemporalMesh bevelObject, CurvesTemporalMesh taperObject, BlenderContext blenderContext) throws BlenderFileException {
List<BezierLine> bevelBezierLines = bevelObject.getScaledBeziers();
List<BezierLine> curveLines = curve.beziers;
if (bevelBezierLines.size() == 0 || curveLines.size() == 0) {
return null;
}
CurvesTemporalMesh result = new CurvesTemporalMesh(blenderContext);
for (BezierLine curveLine : curveLines) {
Vector3f[] curveLineVertices = curveLine.getVertices(bevelStart, bevelEnd);
for (BezierLine bevelBezierLine : bevelBezierLines) {
CurvesTemporalMesh partResult = new CurvesTemporalMesh(blenderContext);
Vector3f[] bevelLineVertices = bevelBezierLine.getVertices();
List<Vector3f[]> bevels = new ArrayList<Vector3f[]>();
Vector3f[] bevelPoints = curvesHelper.transformToFirstLineOfBevelPoints(bevelLineVertices, curveLineVertices[0], curveLineVertices[1]);
bevels.add(bevelPoints);
for (int i = 1; i < curveLineVertices.length - 1; ++i) {
bevelPoints = curvesHelper.transformBevel(bevelPoints, curveLineVertices[i - 1], curveLineVertices[i], curveLineVertices[i + 1]);
bevels.add(bevelPoints);
}
bevelPoints = curvesHelper.transformBevel(bevelPoints, curveLineVertices[curveLineVertices.length - 2], curveLineVertices[curveLineVertices.length - 1], null);
bevels.add(bevelPoints);
Vector3f subtractResult = new Vector3f();
if (bevels.size() > 2) {
// changing the first and last bevel so that they are parallel to their neighbours (blender works this way)
// notice this implicates that the distances of every corresponding point in the two bevels must be identical and
// equal to the distance between the points on curve that define the bevel position
// so instead doing complicated rotations on each point we will simply properly translate each of them
int[][] pointIndexes = new int[][] { { 0, 1 }, { curveLineVertices.length - 1, curveLineVertices.length - 2 } };
for (int[] indexes : pointIndexes) {
float distance = curveLineVertices[indexes[1]].subtract(curveLineVertices[indexes[0]], subtractResult).length();
Vector3f[] bevel = bevels.get(indexes[0]);
Vector3f[] nextBevel = bevels.get(indexes[1]);
for (int i = 0; i < bevel.length; ++i) {
float d = bevel[i].subtract(nextBevel[i], subtractResult).length();
subtractResult.normalizeLocal().multLocal(distance - d);
bevel[i].addLocal(subtractResult);
}
}
}
if (taperObject != null) {
float curveLength = curveLine.getLength(), lengthAlongCurve = bevelStart;
for (int i = 0; i < curveLineVertices.length; ++i) {
if (i > 0) {
lengthAlongCurve += curveLineVertices[i].subtract(curveLineVertices[i - 1], subtractResult).length();
}
float taperScale = -taperObject.getValueAlongCurve(lengthAlongCurve / curveLength).z * taperObject.scale.z;
if (taperScale != 1) {
this.applyScale(bevels.get(i), curveLineVertices[i], taperScale);
}
}
}
// adding vertices to the part result
for (Vector3f[] bevel : bevels) {
for (Vector3f d : bevel) {
partResult.getVertices().add(d);
}
}
// preparing faces for the part result (each face is a quad)
int bevelVertCount = bevelPoints.length;
for (int i = 0; i < bevels.size() - 1; ++i) {
for (int j = 0; j < bevelVertCount - 1; ++j) {
Integer[] indexes = new Integer[] { i * bevelVertCount + j + 1, (i + 1) * bevelVertCount + j + 1, (i + 1) * bevelVertCount + j, i * bevelVertCount + j };
partResult.getFaces().add(new Face(indexes, curveLine.isSmooth(), curveLine.getMaterialNumber(), null, null, partResult));
partResult.getEdges().add(new Edge(indexes[0], indexes[1], 0, true, partResult));
partResult.getEdges().add(new Edge(indexes[1], indexes[2], 0, true, partResult));
partResult.getEdges().add(new Edge(indexes[2], indexes[3], 0, true, partResult));
partResult.getEdges().add(new Edge(indexes[3], indexes[0], 0, true, partResult));
}
if (bevelBezierLine.isCyclic()) {
int j = bevelVertCount - 1;
Integer[] indexes = new Integer[] { i * bevelVertCount, (i + 1) * bevelVertCount, (i + 1) * bevelVertCount + j, i * bevelVertCount + j };
partResult.getFaces().add(new Face(indexes, curveLine.isSmooth(), curveLine.getMaterialNumber(), null, null, partResult));
partResult.getEdges().add(new Edge(indexes[0], indexes[1], 0, true, partResult));
partResult.getEdges().add(new Edge(indexes[1], indexes[2], 0, true, partResult));
partResult.getEdges().add(new Edge(indexes[2], indexes[3], 0, true, partResult));
partResult.getEdges().add(new Edge(indexes[3], indexes[0], 0, true, partResult));
}
}
partResult.generateNormals();
if (fillCaps) {// caps in blender behave as if they weren't affected by the smooth factor
// START CAP
Vector3f[] cap = bevels.get(0);
List<Integer> capIndexes = new ArrayList<Integer>(cap.length);
Vector3f capNormal = curveLineVertices[0].subtract(curveLineVertices[1]).normalizeLocal();
for (int i = 0; i < cap.length; ++i) {
capIndexes.add(partResult.getVertices().size());
partResult.getVertices().add(cap[i]);
partResult.getNormals().add(capNormal);
}
Collections.reverse(capIndexes);// the indexes ned to be reversed for the face to have fron face outside the beveled line
partResult.getFaces().add(new Face(capIndexes.toArray(new Integer[capIndexes.size()]), false, curveLine.getMaterialNumber(), null, null, partResult));
for (int i = 1; i < capIndexes.size(); ++i) {
partResult.getEdges().add(new Edge(capIndexes.get(i - 1), capIndexes.get(i), 0, true, partResult));
}
// END CAP
cap = bevels.get(bevels.size() - 1);
capIndexes.clear();
capNormal = curveLineVertices[curveLineVertices.length - 1].subtract(curveLineVertices[curveLineVertices.length - 2]).normalizeLocal();
for (int i = 0; i < cap.length; ++i) {
capIndexes.add(partResult.getVertices().size());
partResult.getVertices().add(cap[i]);
partResult.getNormals().add(capNormal);
}
partResult.getFaces().add(new Face(capIndexes.toArray(new Integer[capIndexes.size()]), false, curveLine.getMaterialNumber(), null, null, partResult));
for (int i = 1; i < capIndexes.size(); ++i) {
partResult.getEdges().add(new Edge(capIndexes.get(i - 1), capIndexes.get(i), 0, true, partResult));
}
}
result.append(partResult);
}
}
return result;
}
/**
* The method generates normals for the curve. If any normals were already stored they are discarded.
*/
private void generateNormals() {
Map<Integer, Vector3f> normalMap = new TreeMap<Integer, Vector3f>();
for (Face face : faces) {
// the first 3 verts are enough here (all faces are triangles except for the caps, but those are fully flat anyway)
int index1 = face.getIndexes().get(0);
int index2 = face.getIndexes().get(1);
int index3 = face.getIndexes().get(2);
Vector3f n = FastMath.computeNormal(vertices.get(index1), vertices.get(index2), vertices.get(index3));
for (int index : face.getIndexes()) {
Vector3f normal = normalMap.get(index);
if (normal == null) {
normalMap.put(index, n.clone());
} else {
normal.addLocal(n).normalizeLocal();
}
}
}
normals.clear();
Collections.addAll(normals, new Vector3f[normalMap.size()]);
for (Entry<Integer, Vector3f> entry : normalMap.entrySet()) {
normals.set(entry.getKey(), entry.getValue());
}
}
/**
* the method applies scale for the given bevel points. The points table is
* being modified so expect ypur result there.
*
* @param points
* the bevel points
* @param centerPoint
* the center point of the bevel
* @param scale
* the scale to be applied
*/
private void applyScale(Vector3f[] points, Vector3f centerPoint, float scale) {
Vector3f taperScaleVector = new Vector3f();
for (Vector3f p : points) {
taperScaleVector.set(centerPoint).subtractLocal(p).multLocal(1 - scale);
p.addLocal(taperScaleVector);
}
}
/**
* A helper class that represents a single bezier line. It consists of Edge's and allows to
* get a subline of a lentgh of the line.
*
* @author Marcin Roguski (Kaelthas)
*/
public static class BezierLine {
/** The edges of the bezier line. */
private Vector3f[] vertices;
/** The material number of the line. */
private int materialNumber;
/** Indicates if the line is smooth of flat. */
private boolean smooth;
/** The length of the line. */
private float length;
/** Indicates if the current line is cyclic or not. */
private boolean cyclic;
public BezierLine(Vector3f[] vertices, int materialNumber, boolean smooth, boolean cyclik) {
this.vertices = vertices;
this.materialNumber = materialNumber;
this.smooth = smooth;
cyclic = cyclik;
this.recomputeLength();
}
public BezierLine scale(Vector3f scale) {
BezierLine result = new BezierLine(vertices, materialNumber, smooth, cyclic);
result.vertices = new Vector3f[vertices.length];
for (int i = 0; i < vertices.length; ++i) {
result.vertices[i] = vertices[i].mult(scale);
}
result.recomputeLength();
return result;
}
public void removeLastVertex() {
Vector3f[] newVertices = new Vector3f[vertices.length - 1];
for (int i = 0; i < vertices.length - 1; ++i) {
newVertices[i] = vertices[i];
}
vertices = newVertices;
this.recomputeLength();
}
private void recomputeLength() {
length = 0;
for (int i = 1; i < vertices.length; ++i) {
length += vertices[i - 1].distance(vertices[i]);
}
if (cyclic) {
// if the first vertex is repeated at the end the distance will be = 0 so it won't affect the result, and if it is not repeated
// then it is neccessary to add the length between the last and the first vertex
length += vertices[vertices.length - 1].distance(vertices[0]);
}
}
public Vector3f[] getVertices() {
return this.getVertices(0, 1);
}
public Vector3f[] getVertices(float startSlice, float endSlice) {
if (startSlice == 0 && endSlice == 1) {
return vertices;
}
List<Vector3f> result = new ArrayList<Vector3f>();
float length = this.getLength(), temp = 0;
float startSliceLength = length * startSlice;
float endSliceLength = length * endSlice;
int index = 1;
if (startSlice > 0) {
while (temp < startSliceLength) {
Vector3f v1 = vertices[index - 1];
Vector3f v2 = vertices[index++];
float edgeLength = v1.distance(v2);
temp += edgeLength;
if (temp == startSliceLength) {
result.add(v2);
} else if (temp > startSliceLength) {
result.add(v1.subtract(v2).normalizeLocal().multLocal(temp - startSliceLength).addLocal(v2));
}
}
}
if (endSlice < 1) {
if (index == vertices.length) {
Vector3f v1 = vertices[vertices.length - 2];
Vector3f v2 = vertices[vertices.length - 1];
result.add(v1.subtract(v2).normalizeLocal().multLocal(length - endSliceLength).addLocal(v2));
} else {
for (int i = index; i < vertices.length && temp < endSliceLength; ++i) {
Vector3f v1 = vertices[index - 1];
Vector3f v2 = vertices[index++];
temp += v1.distance(v2);
if (temp == endSliceLength) {
result.add(v2);
} else if (temp > endSliceLength) {
result.add(v1.subtract(v2).normalizeLocal().multLocal(temp - startSliceLength).addLocal(v2));
}
}
}
} else {
result.addAll(Arrays.asList(Arrays.copyOfRange(vertices, index, vertices.length)));
}
return result.toArray(new Vector3f[result.size()]);
}
/**
* The method computes the value of a point at the certain relational distance from its beggining.
* @param alongRatio
* the relative distance along the curve; should be a value between 0 and 1 inclusive;
* if the value exceeds the boundaries it is truncated to them
* @return computed value along the curve
*/
public Vector3f getValueAlongCurve(float alongRatio) {
alongRatio = FastMath.clamp(alongRatio, 0, 1);
Vector3f result = new Vector3f();
float probeLength = this.getLength() * alongRatio;
float length = 0;
for (int i = 1; i < vertices.length; ++i) {
float edgeLength = vertices[i].distance(vertices[i - 1]);
if (length + edgeLength > probeLength) {
float ratioAlongEdge = (probeLength - length) / edgeLength;
return FastMath.interpolateLinear(ratioAlongEdge, vertices[i - 1], vertices[i]);
} else if (length + edgeLength == probeLength) {
return vertices[i];
}
length += edgeLength;
}
return result;
}
/**
* @return the material number of this bezier line
*/
public int getMaterialNumber() {
return materialNumber;
}
/**
* @return indicates if the line is smooth of flat
*/
public boolean isSmooth() {
return smooth;
}
/**
* @return the length of this bezier line
*/
public float getLength() {
return length;
}
/**
* @return indicates if the current line is cyclic or not
*/
public boolean isCyclic() {
return cyclic;
}
}
}

@ -126,12 +126,24 @@ public class Structure implements Cloneable {
* @return the value of the field or null if no field with a given name is found
*/
public Object getFieldValue(String fieldName) {
return this.getFieldValue(fieldName, null);
}
/**
* This method returns the value of the filed with a given name.
* @param fieldName
* the name of the field
* @param defaultValue
* the value that is being returned when no field of a given name is found
* @return the value of the field or the given default value if no field with a given name is found
*/
public Object getFieldValue(String fieldName, Object defaultValue) {
for (Field field : fields) {
if (field.name.equalsIgnoreCase(fieldName)) {
return field.value;
}
}
return null;
return defaultValue;
}
/**

@ -70,6 +70,20 @@ public class Edge {
return index2;
}
/**
* @return the first vertex of the edge
*/
public Vector3f getFirstVertex() {
return temporalMesh.getVertices().get(index1);
}
/**
* @return the second vertex of the edge
*/
public Vector3f getSecondVertex() {
return temporalMesh.getVertices().get(index2);
}
/**
* Returns the index other than the given.
* @param index
@ -100,12 +114,25 @@ public class Edge {
return inFace;
}
/**
* @return the length of the edge
*/
public float getLength() {
return this.getFirstVertex().distance(this.getSecondVertex());
}
/**
* @return the mesh this edge belongs to
*/
public TemporalMesh getTemporalMesh() {
return temporalMesh;
}
/**
* @return the centroid of the edge
*/
public Vector3f computeCentroid() {
List<Vector3f> vertices = temporalMesh.getVertices();
return vertices.get(index1).add(vertices.get(index2)).divideLocal(2);
return this.getFirstVertex().add(this.getSecondVertex()).divideLocal(2);
}
/**
@ -161,10 +188,10 @@ public class Edge {
* @return <b>true</b> if the edges cross and false otherwise
*/
public boolean cross(Edge edge) {
Vector3f P1 = temporalMesh.getVertices().get(index1);
Vector3f P2 = edge.temporalMesh.getVertices().get(edge.index1);
Vector3f u = temporalMesh.getVertices().get(index2).subtract(P1);
Vector3f v = edge.temporalMesh.getVertices().get(edge.index2).subtract(P2);
Vector3f P1 = this.getFirstVertex();
Vector3f P2 = edge.getFirstVertex();
Vector3f u = this.getSecondVertex().subtract(P1);
Vector3f v = edge.getSecondVertex().subtract(P2);
float t2 = (u.x * (P2.y - P1.y) - u.y * (P2.x - P1.x)) / (u.y * v.x - u.x * v.y);
float t1 = (P2.x - P1.x + v.x * t2) / u.x;
Vector3f p1 = P1.add(u.mult(t1));
@ -187,7 +214,7 @@ public class Edge {
@Override
public String toString() {
String result = "Edge [" + index1 + ", " + index2 + "] {" + crease + "}";
result += " (" + temporalMesh.getVertices().get(index1) + " -> " + temporalMesh.getVertices().get(index2) + ")";
result += " (" + this.getFirstVertex() + " -> " + this.getSecondVertex() + ")";
if (inFace) {
result += "[F]";
}

@ -17,6 +17,9 @@ import java.util.logging.Logger;
import com.jme3.bounding.BoundingBox;
import com.jme3.bounding.BoundingVolume;
import com.jme3.material.Material;
import com.jme3.material.RenderState.FaceCullMode;
import com.jme3.math.FastMath;
import com.jme3.math.Vector2f;
import com.jme3.math.Vector3f;
import com.jme3.scene.Geometry;
@ -364,32 +367,34 @@ public class TemporalMesh extends Geometry {
* the mesh to be appended
*/
public void append(TemporalMesh mesh) {
// we need to shift the indexes in faces, lines and points
int shift = vertices.size();
if (shift > 0) {
for (Face face : mesh.faces) {
face.getIndexes().shiftIndexes(shift, null);
face.setTemporalMesh(this);
}
for (Edge edge : mesh.edges) {
edge.shiftIndexes(shift, null);
}
for (Point point : mesh.points) {
point.shiftIndexes(shift, null);
if (mesh != null) {
// we need to shift the indexes in faces, lines and points
int shift = vertices.size();
if (shift > 0) {
for (Face face : mesh.faces) {
face.getIndexes().shiftIndexes(shift, null);
face.setTemporalMesh(this);
}
for (Edge edge : mesh.edges) {
edge.shiftIndexes(shift, null);
}
for (Point point : mesh.points) {
point.shiftIndexes(shift, null);
}
}
}
faces.addAll(mesh.faces);
edges.addAll(mesh.edges);
points.addAll(mesh.points);
faces.addAll(mesh.faces);
edges.addAll(mesh.edges);
points.addAll(mesh.points);
vertices.addAll(mesh.vertices);
normals.addAll(mesh.normals);
vertexGroups.addAll(mesh.vertexGroups);
verticesColors.addAll(mesh.verticesColors);
boneIndexes.putAll(mesh.boneIndexes);
vertices.addAll(mesh.vertices);
normals.addAll(mesh.normals);
vertexGroups.addAll(mesh.vertexGroups);
verticesColors.addAll(mesh.verticesColors);
boneIndexes.putAll(mesh.boneIndexes);
this.rebuildIndexesMappings();
this.rebuildIndexesMappings();
}
}
/**
@ -506,11 +511,17 @@ public class TemporalMesh extends Geometry {
for (List<Integer> indexes : triangulatedIndexes) {
assert indexes.size() == 3 : "The mesh has not been properly triangulated!";
Vector3f normal = null;
if(!face.isSmooth()) {
normal = FastMath.computeNormal(vertices.get(indexes.get(0)), vertices.get(indexes.get(1)), vertices.get(indexes.get(2)));
}
boneBuffers.clear();
for (int i = 0; i < 3; ++i) {
int vertIndex = indexes.get(i);
tempVerts[i] = vertices.get(vertIndex);
tempNormals[i] = normals.get(vertIndex);
tempNormals[i] = normal != null ? normal : normals.get(vertIndex);
tempVertColors[i] = vertexColors != null ? vertexColors.get(face.getIndexes().indexOf(vertIndex)) : null;
if (boneIndexes.size() > 0 && vertexGroups.size() > 0) {
@ -519,12 +530,12 @@ public class TemporalMesh extends Geometry {
for (Entry<String, Integer> entry : boneIndexes.entrySet()) {
if (vertexGroupsForVertex.containsKey(entry.getKey())) {
float weight = vertexGroupsForVertex.get(entry.getKey());
if(weight > 0) {// no need to use such weights
if (weight > 0) {// no need to use such weights
boneBuffersForVertex.put(weight, entry.getValue());
}
}
}
if(boneBuffersForVertex.size() == 0) {// attach the vertex to zero-indexed bone so that it does not collapse to (0, 0, 0)
if (boneBuffersForVertex.size() == 0) {// attach the vertex to zero-indexed bone so that it does not collapse to (0, 0, 0)
boneBuffersForVertex.put(1.0f, 0);
}
boneBuffers.add(boneBuffersForVertex);
@ -591,7 +602,9 @@ public class TemporalMesh extends Geometry {
if (materialIndex >= 0 && materials != null && materials.length > materialIndex && materials[materialIndex] != null) {
materials[materialIndex].applyMaterial(geometry, meshStructure.getOldMemoryAddress(), entry.getValue().getUvCoords(), blenderContext);
} else {
geometry.setMaterial(blenderContext.getDefaultMaterial());
Material defaultMaterial = blenderContext.getDefaultMaterial().clone();
defaultMaterial.getAdditionalRenderState().setFaceCullMode(FaceCullMode.Off);
geometry.setMaterial(defaultMaterial);
}
}
}

@ -182,9 +182,9 @@ public class ObjectHelper extends AbstractBlenderHelper {
if (pCurve.isNotNull()) {
CurvesHelper curvesHelper = blenderContext.getHelper(CurvesHelper.class);
Structure curveData = pCurve.fetchData().get(0);
List<Geometry> curves = curvesHelper.toCurve(curveData, blenderContext);
for (Geometry curve : curves) {
result.attachChild(curve);
TemporalMesh curvesTemporalMesh = curvesHelper.toCurve(curveData, blenderContext);
if(curvesTemporalMesh != null) {
result.attachChild(curvesTemporalMesh);
}
}
break;

Loading…
Cancel
Save