Single pass lighting implementation.

Along with some light shaders refactoring and clean up
experimental
Nehon 10 years ago
parent 3ef5505faa
commit c55717141e
  1. 131
      jme3-core/src/main/java/com/jme3/material/Material.java
  2. 11
      jme3-core/src/main/java/com/jme3/material/Technique.java
  3. 30
      jme3-core/src/main/java/com/jme3/renderer/RenderManager.java
  4. 120
      jme3-core/src/main/resources/Common/MatDefs/Light/Lighting.frag
  5. 75
      jme3-core/src/main/resources/Common/MatDefs/Light/Lighting.j3md
  6. 107
      jme3-core/src/main/resources/Common/MatDefs/Light/Lighting.vert
  7. 218
      jme3-core/src/main/resources/Common/MatDefs/Light/SPLighting.frag
  8. 172
      jme3-core/src/main/resources/Common/MatDefs/Light/SPLighting.vert
  9. 62
      jme3-core/src/main/resources/Common/ShaderLib/Lighting.glsllib
  10. 29
      jme3-core/src/main/resources/Common/ShaderLib/PhongLighting.glsllib
  11. 255
      jme3-examples/src/main/java/jme3test/light/TestManyLightsSingle.java
  12. 615
      jme3-terrain/src/main/resources/Common/MatDefs/Terrain/SPTerrainLighting.frag
  13. 66
      jme3-terrain/src/main/resources/Common/MatDefs/Terrain/SPTerrainLighting.vert
  14. 52
      jme3-terrain/src/main/resources/Common/MatDefs/Terrain/TerrainLighting.frag
  15. 64
      jme3-terrain/src/main/resources/Common/MatDefs/Terrain/TerrainLighting.j3md
  16. 27
      jme3-terrain/src/main/resources/Common/MatDefs/Terrain/TerrainLighting.vert

@ -42,7 +42,6 @@ import com.jme3.material.TechniqueDef.LightMode;
import com.jme3.material.TechniqueDef.ShadowMode;
import com.jme3.math.*;
import com.jme3.renderer.Caps;
import com.jme3.renderer.GL1Renderer;
import com.jme3.renderer.RenderManager;
import com.jme3.renderer.Renderer;
import com.jme3.renderer.RendererException;
@ -52,7 +51,6 @@ import com.jme3.scene.Mesh;
import com.jme3.scene.instancing.InstancedGeometry;
import com.jme3.shader.Shader;
import com.jme3.shader.Uniform;
import com.jme3.shader.UniformBindingManager;
import com.jme3.shader.VarType;
import com.jme3.texture.Texture;
import com.jme3.texture.image.ColorSpace;
@ -697,12 +695,15 @@ public class Material implements CloneableSmartAsset, Cloneable, Savable {
setParam(name, VarType.Vector4, value);
}
private ColorRGBA getAmbientColor(LightList lightList) {
private ColorRGBA getAmbientColor(LightList lightList, boolean removeLights) {
ambientLightColor.set(0, 0, 0, 1);
for (int j = 0; j < lightList.size(); j++) {
Light l = lightList.get(j);
if (l instanceof AmbientLight) {
ambientLightColor.addLocal(l.getColor());
if(removeLights){
lightList.remove(l);
}
}
}
ambientLightColor.a = 1.0f;
@ -741,47 +742,73 @@ public class Material implements CloneableSmartAsset, Cloneable, Savable {
* g_LightPosition.w is the inverse radius (1/r) of the light (for
* attenuation) <br/> </p>
*/
protected void updateLightListUniforms(Shader shader, Geometry g, LightList lightList, int numLights) {
protected int updateLightListUniforms(Shader shader, Geometry g, LightList lightList, int numLights, RenderManager rm, int startIndex) {
if (numLights == 0) { // this shader does not do lighting, ignore.
return;
return 0;
}
Uniform lightColor = shader.getUniform("g_LightColor");
Uniform lightPos = shader.getUniform("g_LightPosition");
Uniform lightDir = shader.getUniform("g_LightDirection");
lightColor.setVector4Length(numLights);
lightPos.setVector4Length(numLights);
lightDir.setVector4Length(numLights);
Uniform lightData = shader.getUniform("g_LightData");
lightData.setVector4Length(numLights * 3);//8 lights * max 3
Uniform ambientColor = shader.getUniform("g_AmbientLightColor");
ambientColor.setValue(VarType.Vector4, getAmbientColor(lightList));
int lightIndex = 0;
for (int i = 0; i < numLights; i++) {
if (lightList.size() <= i) {
lightColor.setVector4InArray(0f, 0f, 0f, 0f, lightIndex);
lightPos.setVector4InArray(0f, 0f, 0f, 0f, lightIndex);
if (startIndex != 0) {
// apply additive blending for 2nd and future passes
rm.getRenderer().applyRenderState(additiveLight);
ambientColor.setValue(VarType.Vector4, ColorRGBA.Black);
}else{
Light l = lightList.get(i);
ambientColor.setValue(VarType.Vector4, getAmbientColor(lightList,true));
}
int lightDataIndex = 0;
TempVars vars = TempVars.get();
Vector4f tmpVec = vars.vect4f1;
int curIndex;
int endIndex = numLights + startIndex;
for (curIndex = startIndex; curIndex < endIndex && curIndex < lightList.size(); curIndex++) {
Light l = lightList.get(curIndex);
if(l.getType() == Light.Type.Ambient){
endIndex++;
continue;
}
ColorRGBA color = l.getColor();
lightColor.setVector4InArray(color.getRed(),
//Color
lightData.setVector4InArray(color.getRed(),
color.getGreen(),
color.getBlue(),
l.getType().getId(),
i);
lightDataIndex);
lightDataIndex++;
switch (l.getType()) {
case Directional:
DirectionalLight dl = (DirectionalLight) l;
Vector3f dir = dl.getDirection();
lightPos.setVector4InArray(dir.getX(), dir.getY(), dir.getZ(), -1, lightIndex);
//Data directly sent in view space to avoid a matrix mult for each pixel
tmpVec.set(dir.getX(), dir.getY(), dir.getZ(), 0.0f);
rm.getCurrentCamera().getViewMatrix().mult(tmpVec, tmpVec);
// tmpVec.divideLocal(tmpVec.w);
// tmpVec.normalizeLocal();
lightData.setVector4InArray(tmpVec.getX(), tmpVec.getY(), tmpVec.getZ(), -1, lightDataIndex);
lightDataIndex++;
//PADDING
lightData.setVector4InArray(0,0,0,0, lightDataIndex);
lightDataIndex++;
break;
case Point:
PointLight pl = (PointLight) l;
Vector3f pos = pl.getPosition();
float invRadius = pl.getInvRadius();
lightPos.setVector4InArray(pos.getX(), pos.getY(), pos.getZ(), invRadius, lightIndex);
tmpVec.set(pos.getX(), pos.getY(), pos.getZ(), 1.0f);
rm.getCurrentCamera().getViewMatrix().mult(tmpVec, tmpVec);
//tmpVec.divideLocal(tmpVec.w);
lightData.setVector4InArray(tmpVec.getX(), tmpVec.getY(), tmpVec.getZ(), invRadius, lightDataIndex);
lightDataIndex++;
//PADDING
lightData.setVector4InArray(0,0,0,0, lightDataIndex);
lightDataIndex++;
break;
case Spot:
SpotLight sl = (SpotLight) l;
@ -789,27 +816,32 @@ public class Material implements CloneableSmartAsset, Cloneable, Savable {
Vector3f dir2 = sl.getDirection();
float invRange = sl.getInvSpotRange();
float spotAngleCos = sl.getPackedAngleCos();
tmpVec.set(pos2.getX(), pos2.getY(), pos2.getZ(), 1.0f);
rm.getCurrentCamera().getViewMatrix().mult(tmpVec, tmpVec);
// tmpVec.divideLocal(tmpVec.w);
lightData.setVector4InArray(tmpVec.getX(), tmpVec.getY(), tmpVec.getZ(), invRange, lightDataIndex);
lightDataIndex++;
lightPos.setVector4InArray(pos2.getX(), pos2.getY(), pos2.getZ(), invRange, lightIndex);
lightDir.setVector4InArray(dir2.getX(), dir2.getY(), dir2.getZ(), spotAngleCos, lightIndex);
//We transform the spot direction in view space here to save 5 varying later in the lighting shader
//one vec4 less and a vec4 that becomes a vec3
//the downside is that spotAngleCos decoding happens now in the frag shader.
tmpVec.set(dir2.getX(), dir2.getY(), dir2.getZ(), 0.0f);
rm.getCurrentCamera().getViewMatrix().mult(tmpVec, tmpVec);
tmpVec.normalizeLocal();
lightData.setVector4InArray(tmpVec.getX(), tmpVec.getY(), tmpVec.getZ(), spotAngleCos, lightDataIndex);
lightDataIndex++;
break;
case Ambient:
// skip this light. Does not increase lightIndex
continue;
default:
throw new UnsupportedOperationException("Unknown type of light: " + l.getType());
}
}
lightIndex++;
}
while (lightIndex < numLights) {
lightColor.setVector4InArray(0f, 0f, 0f, 0f, lightIndex);
lightPos.setVector4InArray(0f, 0f, 0f, 0f, lightIndex);
lightIndex++;
vars.release();
//Padding of unsued buffer space
while(lightDataIndex < numLights * 3) {
lightData.setVector4InArray(0f, 0f, 0f, 0f, lightDataIndex);
lightDataIndex++;
}
return curIndex;
}
protected void renderMultipassLighting(Shader shader, Geometry g, LightList lightList, RenderManager rm) {
@ -830,7 +862,7 @@ public class Material implements CloneableSmartAsset, Cloneable, Savable {
if (isFirstLight) {
// set ambient color for first light only
ambientColor.setValue(VarType.Vector4, getAmbientColor(lightList));
ambientColor.setValue(VarType.Vector4, getAmbientColor(lightList, false));
isFirstLight = false;
isSecondLight = true;
} else if (isSecondLight) {
@ -885,9 +917,9 @@ public class Material implements CloneableSmartAsset, Cloneable, Savable {
tmpLightPosition.set(pos2.getX(), pos2.getY(), pos2.getZ(), invRange);
lightPos.setValue(VarType.Vector4, tmpLightPosition);
//We transform the spot directoin in view space here to save 5 varying later in the lighting shader
//We transform the spot direction in view space here to save 5 varying later in the lighting shader
//one vec4 less and a vec4 that becomes a vec3
//the downside is that spotAngleCos decoding happen now in the frag shader.
//the downside is that spotAngleCos decoding happens now in the frag shader.
tmpVec.set(dir2.getX(), dir2.getY(), dir2.getZ(), 0);
rm.getCurrentCamera().getViewMatrix().mult(tmpVec, tmpVec);
tmpLightDirection.set(tmpVec.getX(), tmpVec.getY(), tmpVec.getZ(), spotAngleCos);
@ -906,7 +938,7 @@ public class Material implements CloneableSmartAsset, Cloneable, Savable {
if (isFirstLight && lightList.size() > 0) {
// There are only ambient lights in the scene. Render
// a dummy "normal light" so we can see the ambient
ambientColor.setValue(VarType.Vector4, getAmbientColor(lightList));
ambientColor.setValue(VarType.Vector4, getAmbientColor(lightList, false));
lightColor.setValue(VarType.Vector4, ColorRGBA.BlackNoAlpha);
lightPos.setValue(VarType.Vector4, nullDirLight);
r.setShader(shader);
@ -957,8 +989,11 @@ public class Material implements CloneableSmartAsset, Cloneable, Savable {
// use the first one that supports all the caps
tech = new Technique(this, techDef);
techniques.put(name, tech);
if(tech.getDef().getLightMode() == renderManager.getPreferredLightMode() ||
tech.getDef().getLightMode() == LightMode.Disable){
break;
}
}
lastTech = techDef;
}
if (tech == null) {
@ -990,7 +1025,7 @@ public class Material implements CloneableSmartAsset, Cloneable, Savable {
}
technique = tech;
tech.makeCurrent(def.getAssetManager(), true, rendererCaps);
tech.makeCurrent(def.getAssetManager(), true, rendererCaps, renderManager);
// shader was changed
sortingId = -1;
@ -1000,7 +1035,7 @@ public class Material implements CloneableSmartAsset, Cloneable, Savable {
if (technique == null) {
selectTechnique("Default", rm);
} else {
technique.makeCurrent(def.getAssetManager(), false, rm.getRenderer().getCaps());
technique.makeCurrent(def.getAssetManager(), false, rm.getRenderer().getCaps(), rm);
}
}
@ -1162,8 +1197,14 @@ public class Material implements CloneableSmartAsset, Cloneable, Savable {
r.setLighting(null);
break;
case SinglePass:
updateLightListUniforms(shader, geom, lights, 4);
break;
int nbRenderedLights = 0;
resetUniformsNotSetByCurrent(shader);
while(nbRenderedLights < lights.size()){
nbRenderedLights = updateLightListUniforms(shader, geom, lights, rm.getSinglePassLightBatchSize(), rm, nbRenderedLights);
r.setShader(shader);
renderMeshFromGeometry(r, geom);
}
return;
case FixedPipeline:
r.setLighting(lights);
break;

@ -33,8 +33,8 @@ package com.jme3.material;
import com.jme3.asset.AssetManager;
import com.jme3.renderer.Caps;
import com.jme3.renderer.RenderManager;
import com.jme3.shader.*;
import com.jme3.util.ListMap;
import java.util.ArrayList;
import java.util.EnumSet;
import java.util.List;
@ -172,7 +172,7 @@ public class Technique /* implements Savable */ {
*
* @param assetManager The asset manager to use for loading shaders.
*/
public void makeCurrent(AssetManager assetManager, boolean techniqueSwitched, EnumSet<Caps> rendererCaps) {
public void makeCurrent(AssetManager assetManager, boolean techniqueSwitched, EnumSet<Caps> rendererCaps, RenderManager rm) {
if (!def.isUsingShaders()) {
// No shaders are used, no processing is neccessary.
return;
@ -182,6 +182,13 @@ public class Technique /* implements Savable */ {
if (defines.update(owner.getParamsMap(), def)) {
needReload = true;
}
if(getDef().getLightMode()== TechniqueDef.LightMode.SinglePass){
defines.set("SINGLE_PASS_LIGHTING", VarType.Boolean, true);
defines.set("NB_LIGHTS", VarType.Int, rm.getSinglePassLightBatchSize()*3 );
}else{
defines.set("SINGLE_PASS_LIGHTING", VarType.Boolean, null);
}
}
if (needReload) {

@ -38,6 +38,7 @@ import com.jme3.material.Material;
import com.jme3.material.MaterialDef;
import com.jme3.material.RenderState;
import com.jme3.material.Technique;
import com.jme3.material.TechniqueDef;
import com.jme3.math.*;
import com.jme3.post.SceneProcessor;
import com.jme3.profile.AppProfiler;
@ -89,6 +90,8 @@ public class RenderManager {
private boolean handleTranlucentBucket = true;
private AppProfiler prof;
private LightFilter lightFilter = new DefaultLightFilter();
private TechniqueDef.LightMode preferredLightMode = TechniqueDef.LightMode.MultiPass;
private int singlePassLightBatchSize = 1;
/**
* Create a high-level rendering interface over the
@ -780,6 +783,33 @@ public class RenderManager {
vp.getQueue().clear();
}
/**
* Sets the light filter to use when rendering Lighted Geometries
*
* @see LightFilter
* @param lightFilter The light filter tose. Set it to null if you want all lights to be rendered
*/
public void setLightFilter(LightFilter lightFilter) {
this.lightFilter = lightFilter;
}
public void setPreferredLightMode(TechniqueDef.LightMode preferredLightMode) {
this.preferredLightMode = preferredLightMode;
}
public TechniqueDef.LightMode getPreferredLightMode() {
return preferredLightMode;
}
public int getSinglePassLightBatchSize() {
return singlePassLightBatchSize;
}
public void setSinglePassLightBatchSize(int singlePassLightBatchSize) {
this.singlePassLightBatchSize = singlePassLightBatchSize;
}
/**
* Render the given viewport queues.
* <p>

@ -1,7 +1,9 @@
#import "Common/ShaderLib/Parallax.glsllib"
#import "Common/ShaderLib/Optics.glsllib"
#define ATTENUATION
//#define HQ_ATTENUATION
#ifndef VERTEX_LIGHTING
#import "Common/ShaderLib/PhongLighting.glsllib"
#import "Common/ShaderLib/Lighting.glsllib"
#endif
varying vec2 texCoord;
#ifdef SEPARATE_TEXCOORD
@ -59,11 +61,6 @@ uniform float m_AlphaDiscardThreshold;
#ifndef VERTEX_LIGHTING
uniform float m_Shininess;
#ifdef HQ_ATTENUATION
uniform vec4 g_LightPosition;
#endif
#ifdef USE_REFLECTION
uniform float m_ReflectionPower;
uniform float m_ReflectionIntensity;
@ -71,69 +68,6 @@ uniform vec4 g_LightPosition;
uniform ENVMAP m_EnvMap;
#endif
float tangDot(in vec3 v1, in vec3 v2){
float d = dot(v1,v2);
#ifdef V_TANGENT
d = 1.0 - d*d;
return step(0.0, d) * sqrt(d);
#else
return d;
#endif
}
float lightComputeDiffuse(in vec3 norm, in vec3 lightdir, in vec3 viewdir){
#ifdef MINNAERT
float NdotL = max(0.0, dot(norm, lightdir));
float NdotV = max(0.0, dot(norm, viewdir));
return NdotL * pow(max(NdotL * NdotV, 0.1), -1.0) * 0.5;
#else
return max(0.0, dot(norm, lightdir));
#endif
}
float lightComputeSpecular(in vec3 norm, in vec3 viewdir, in vec3 lightdir, in float shiny){
// NOTE: check for shiny <= 1 removed since shininess is now
// 1.0 by default (uses matdefs default vals)
#ifdef LOW_QUALITY
// Blinn-Phong
// Note: preferably, H should be computed in the vertex shader
vec3 H = (viewdir + lightdir) * vec3(0.5);
return pow(max(tangDot(H, norm), 0.0), shiny);
#elif defined(WARDISO)
// Isotropic Ward
vec3 halfVec = normalize(viewdir + lightdir);
float NdotH = max(0.001, tangDot(norm, halfVec));
float NdotV = max(0.001, tangDot(norm, viewdir));
float NdotL = max(0.001, tangDot(norm, lightdir));
float a = tan(acos(NdotH));
float p = max(shiny/128.0, 0.001);
return NdotL * (1.0 / (4.0*3.14159265*p*p)) * (exp(-(a*a)/(p*p)) / (sqrt(NdotV * NdotL)));
#else
// Standard Phong
vec3 R = reflect(-lightdir, norm);
return pow(max(tangDot(R, viewdir), 0.0), shiny);
#endif
}
vec2 computeLighting(in vec3 wvNorm, in vec3 wvViewDir, in vec3 wvLightDir){
float diffuseFactor = lightComputeDiffuse(wvNorm, wvLightDir, wvViewDir);
float specularFactor = lightComputeSpecular(wvNorm, wvViewDir, wvLightDir, m_Shininess);
#ifdef HQ_ATTENUATION
float att = clamp(1.0 - g_LightPosition.w * length(lightVec), 0.0, 1.0);
#else
float att = vLightDir.w;
#endif
if (m_Shininess <= 1.0) {
specularFactor = 0.0; // should be one instruction on most cards ..
}
specularFactor *= diffuseFactor;
return vec2(diffuseFactor, specularFactor) * vec2(att);
}
#endif
void main(){
@ -176,35 +110,6 @@ void main(){
discard;
}
#ifndef VERTEX_LIGHTING
float spotFallOff = 1.0;
#if __VERSION__ >= 110
// allow use of control flow
if(g_LightDirection.w != 0.0){
#endif
vec3 L = normalize(lightVec.xyz);
vec3 spotdir = normalize(g_LightDirection.xyz);
float curAngleCos = dot(-L, spotdir);
float innerAngleCos = floor(g_LightDirection.w) * 0.001;
float outerAngleCos = fract(g_LightDirection.w);
float innerMinusOuter = innerAngleCos - outerAngleCos;
spotFallOff = (curAngleCos - outerAngleCos) / innerMinusOuter;
#if __VERSION__ >= 110
if(spotFallOff <= 0.0){
gl_FragColor.rgb = AmbientSum * diffuseColor.rgb;
gl_FragColor.a = alpha;
return;
}else{
spotFallOff = clamp(spotFallOff, 0.0, 1.0);
}
}
#else
spotFallOff = clamp(spotFallOff, step(g_LightDirection.w, 0.001), 1.0);
#endif
#endif
// ***********************
// Read from textures
@ -257,8 +162,23 @@ void main(){
vec4 lightDir = vLightDir;
lightDir.xyz = normalize(lightDir.xyz);
vec3 viewDir = normalize(vViewDir);
float spotFallOff = 1.0;
#if __VERSION__ >= 110
// allow use of control flow
if(g_LightDirection.w != 0.0){
#endif
spotFallOff = computeSpotFalloff(g_LightDirection, lightVec);
#if __VERSION__ >= 110
if(spotFallOff <= 0.0){
gl_FragColor.rgb = AmbientSum * diffuseColor.rgb;
gl_FragColor.a = alpha;
return;
}
}
#endif
vec2 light = computeLighting(normal, viewDir, lightDir.xyz) * spotFallOff;
vec2 light = computeLighting(normal, viewDir, lightDir.xyz, lightDir.w * spotFallOff, m_Shininess) ;
#ifdef COLORRAMP
diffuseColor.rgb *= texture2D(m_ColorRamp, vec2(light.x, 0.0)).rgb;
specularColor.rgb *= texture2D(m_ColorRamp, vec2(light.y, 0.0)).rgb;

@ -6,34 +6,12 @@ MaterialDef Phong Lighting {
// For better performance
Boolean VertexLighting
// Use more efficent algorithms to improve performance
Boolean LowQuality
// Improve quality at the cost of performance
Boolean HighQuality
// Output alpha from the diffuse map
Boolean UseAlpha
// Alpha threshold for fragment discarding
Float AlphaDiscardThreshold (AlphaTestFallOff)
// Normal map is in BC5/ATI2n/LATC/3Dc compression format
Boolean LATC
// Use the provided ambient, diffuse, and specular colors
Boolean UseMaterialColors
// Activate shading along the tangent, instead of the normal
// Requires tangent data to be available on the model.
Boolean VTangent
// Use minnaert diffuse instead of lambert
Boolean Minnaert
// Use ward specular instead of phong
Boolean WardIso
// Use vertex color as an additional diffuse color.
Boolean UseVertexColor
@ -133,9 +111,48 @@ MaterialDef Phong Lighting {
Int NumberOfBones
Matrix4Array BoneMatrices
//For instancing
Boolean UseInstancing
}
Technique {
LightMode SinglePass
VertexShader GLSL100: Common/MatDefs/Light/SPLighting.vert
FragmentShader GLSL100: Common/MatDefs/Light/SPLighting.frag
WorldParameters {
WorldViewProjectionMatrix
NormalMatrix
WorldViewMatrix
ViewMatrix
CameraPosition
WorldMatrix
ViewProjectionMatrix
}
Defines {
VERTEX_COLOR : UseVertexColor
VERTEX_LIGHTING : VertexLighting
MATERIAL_COLORS : UseMaterialColors
DIFFUSEMAP : DiffuseMap
NORMALMAP : NormalMap
SPECULARMAP : SpecularMap
PARALLAXMAP : ParallaxMap
NORMALMAP_PARALLAX : PackedNormalParallax
STEEP_PARALLAX : SteepParallax
ALPHAMAP : AlphaMap
COLORRAMP : ColorRamp
LIGHTMAP : LightMap
SEPARATE_TEXCOORD : SeparateTexCoord
DISCARD_ALPHA : AlphaDiscardThreshold
USE_REFLECTION : EnvMap
SPHERE_MAP : SphereMap
NUM_BONES : NumberOfBones
INSTANCING : UseInstancing
}
}
Technique {
LightMode MultiPass
@ -154,17 +171,9 @@ MaterialDef Phong Lighting {
}
Defines {
LATC : LATC
VERTEX_COLOR : UseVertexColor
VERTEX_LIGHTING : VertexLighting
ATTENUATION : Attenuation
MATERIAL_COLORS : UseMaterialColors
V_TANGENT : VTangent
MINNAERT : Minnaert
WARDISO : WardIso
LOW_QUALITY : LowQuality
HQ_ATTENUATION : HighQuality
DIFFUSEMAP : DiffuseMap
NORMALMAP : NormalMap
SPECULARMAP : SpecularMap
@ -175,16 +184,16 @@ MaterialDef Phong Lighting {
COLORRAMP : ColorRamp
LIGHTMAP : LightMap
SEPARATE_TEXCOORD : SeparateTexCoord
DISCARD_ALPHA : AlphaDiscardThreshold
USE_REFLECTION : EnvMap
SPHERE_MAP : SphereMap
NUM_BONES : NumberOfBones
INSTANCING : UseInstancing
}
}
Technique PreShadow {
VertexShader GLSL100 : Common/MatDefs/Shadow/PreShadow.vert

@ -1,8 +1,10 @@
#import "Common/ShaderLib/Instancing.glsllib"
#define ATTENUATION
//#define HQ_ATTENUATION
#import "Common/ShaderLib/Skinning.glsllib"
#import "Common/ShaderLib/Lighting.glsllib"
#ifdef VERTEX_LIGHTING
#import "Common/ShaderLib/PhongLighting.glsllib"
#endif
uniform vec4 m_Ambient;
uniform vec4 m_Diffuse;
@ -28,7 +30,6 @@ attribute vec2 inTexCoord;
attribute vec3 inNormal;
varying vec3 lightVec;
//varying vec4 spotVec;
#ifdef VERTEX_COLOR
attribute vec4 inColor;
@ -40,7 +41,6 @@ varying vec3 lightVec;
#ifndef NORMALMAP
varying vec3 vNormal;
#endif
//varying vec3 vPosition;
varying vec3 vViewDir;
varying vec4 vLightDir;
#else
@ -77,57 +77,6 @@ varying vec3 lightVec;
}
#endif
// JME3 lights in world space
void lightComputeDir(in vec3 worldPos, in vec4 color, in vec4 position, out vec4 lightDir){
float posLight = step(0.5, color.w);
vec3 tempVec = position.xyz * sign(posLight - 0.5) - (worldPos * posLight);
lightVec = tempVec;
#ifdef ATTENUATION
float dist = length(tempVec);
lightDir.w = clamp(1.0 - position.w * dist * posLight, 0.0, 1.0);
lightDir.xyz = tempVec / vec3(dist);
#else
lightDir = vec4(normalize(tempVec), 1.0);
#endif
}
#ifdef VERTEX_LIGHTING
float lightComputeDiffuse(in vec3 norm, in vec3 lightdir){
return max(0.0, dot(norm, lightdir));
}
float lightComputeSpecular(in vec3 norm, in vec3 viewdir, in vec3 lightdir, in float shiny){
if (shiny <= 1.0){
return 0.0;
}
#ifndef LOW_QUALITY
vec3 H = (viewdir + lightdir) * vec3(0.5);
return pow(max(dot(H, norm), 0.0), shiny);
#else
return 0.0;
#endif
}
vec2 computeLighting(in vec3 wvPos, in vec3 wvNorm, in vec3 wvViewDir, in vec4 wvLightPos){
vec4 lightDir;
lightComputeDir(wvPos, g_LightColor, wvLightPos, lightDir);
float spotFallOff = 1.0;
if(g_LightDirection.w != 0.0){
vec3 L=normalize(lightVec.xyz);
vec3 spotdir = normalize(g_LightDirection.xyz);
float curAngleCos = dot(-L, spotdir);
float innerAngleCos = floor(g_LightDirection.w) * 0.001;
float outerAngleCos = fract(g_LightDirection.w);
float innerMinusOuter = innerAngleCos - outerAngleCos;
spotFallOff = clamp((curAngleCos - outerAngleCos) / innerMinusOuter, 0.0, 1.0);
}
float diffuseFactor = lightComputeDiffuse(wvNorm, lightDir.xyz);
float specularFactor = lightComputeSpecular(wvNorm, wvViewDir, lightDir.xyz, m_Shininess);
//specularFactor *= step(0.01, diffuseFactor);
return vec2(diffuseFactor, specularFactor) * vec2(lightDir.w)*spotFallOff;
}
#endif
void main(){
vec4 modelSpacePos = vec4(inPosition, 1.0);
vec3 modelSpaceNorm = inNormal;
@ -154,11 +103,6 @@ void main(){
vec3 wvNormal = normalize(TransformNormal(modelSpaceNorm));//normalize(g_NormalMatrix * modelSpaceNorm);
vec3 viewDir = normalize(-wvPosition);
//vec4 lightColor = g_LightColor[gl_InstanceID];
//vec4 lightPos = g_LightPosition[gl_InstanceID];
//vec4 wvLightPos = (g_ViewMatrix * vec4(lightPos.xyz, lightColor.w));
//wvLightPos.w = lightPos.w;
vec4 wvLightPos = (g_ViewMatrix * vec4(g_LightPosition.xyz,clamp(g_LightColor.w,0.0,1.0)));
wvLightPos.w = g_LightPosition.w;
vec4 lightColor = g_LightColor;
@ -166,41 +110,24 @@ void main(){
#if defined(NORMALMAP) && !defined(VERTEX_LIGHTING)
vec3 wvTangent = normalize(TransformNormal(modelSpaceTan));
vec3 wvBinormal = cross(wvNormal, wvTangent);
mat3 tbnMat = mat3(wvTangent, wvBinormal * inTangent.w,wvNormal);
//vPosition = wvPosition * tbnMat;
//vViewDir = viewDir * tbnMat;
vViewDir = -wvPosition * tbnMat;
lightComputeDir(wvPosition, lightColor, wvLightPos, vLightDir);
lightComputeDir(wvPosition, lightColor.w, wvLightPos, vLightDir, lightVec);
vLightDir.xyz = (vLightDir.xyz * tbnMat).xyz;
#elif !defined(VERTEX_LIGHTING)
vNormal = wvNormal;
//vPosition = wvPosition;
vViewDir = viewDir;
lightComputeDir(wvPosition, lightColor, wvLightPos, vLightDir);
#ifdef V_TANGENT
vNormal = normalize(TransformNormal(inTangent.xyz));
vNormal = -cross(cross(vLightDir.xyz, vNormal), vNormal);
lightComputeDir(wvPosition, lightColor.w, wvLightPos, vLightDir, lightVec);
#endif
#endif
//computing spot direction in view space and unpacking spotlight cos
// spotVec = (g_ViewMatrix * vec4(g_LightDirection.xyz, 0.0) );
// spotVec.w = floor(g_LightDirection.w) * 0.001;
// lightVec.w = fract(g_LightDirection.w);
lightColor.w = 1.0;
#ifdef MATERIAL_COLORS
AmbientSum = (m_Ambient * g_AmbientLightColor).rgb;
DiffuseSum = m_Diffuse * lightColor;
DiffuseSum = m_Diffuse * vec4(lightColor.rgb, 1.0);
SpecularSum = (m_Specular * lightColor).rgb;
#else
AmbientSum = vec3(0.2, 0.2, 0.2) * g_AmbientLightColor.rgb; // Default: ambient color is dark gray
DiffuseSum = lightColor;
AmbientSum = g_AmbientLightColor.rgb; // Default: ambient color is dark gray
DiffuseSum = vec4(lightColor.rgb, 1.0);
SpecularSum = vec3(0.0);
#endif
@ -210,7 +137,19 @@ void main(){
#endif
#ifdef VERTEX_LIGHTING
vertexLightValues = computeLighting(wvPosition, wvNormal, viewDir, wvLightPos);
float spotFallOff = 1.0;
vec4 vLightDir;
lightComputeDir(wvPosition, lightColor.w, wvLightPos, vLightDir, lightVec);
#if __VERSION__ >= 110
// allow use of control flow
if(lightColor.w > 1.0){
#endif
spotFallOff = computeSpotFalloff(g_LightDirection, lightVec);
#if __VERSION__ >= 110
}
#endif
vertexLightValues = computeLighting(wvNormal, viewDir, vLightDir.xyz, vLightDir.w * spotFallOff, m_Shininess);
#endif
#ifdef USE_REFLECTION

@ -0,0 +1,218 @@
#import "Common/ShaderLib/Parallax.glsllib"
#import "Common/ShaderLib/Optics.glsllib"
#ifndef VERTEX_LIGHTING
#import "Common/ShaderLib/PhongLighting.glsllib"
#import "Common/ShaderLib/Lighting.glsllib"
#endif
varying vec2 texCoord;
#ifdef SEPARATE_TEXCOORD
varying vec2 texCoord2;
#endif
varying vec3 AmbientSum;
varying vec4 DiffuseSum;
varying vec3 SpecularSum;
#ifndef VERTEX_LIGHTING
uniform mat4 g_ViewMatrix;
uniform vec4 g_LightData[NB_LIGHTS];
varying vec3 vPos;
#else
varying vec3 specularAccum;
varying vec4 diffuseAccum;
#endif
#ifdef DIFFUSEMAP
uniform sampler2D m_DiffuseMap;
#endif
#ifdef SPECULARMAP
uniform sampler2D m_SpecularMap;
#endif
#ifdef PARALLAXMAP
uniform sampler2D m_ParallaxMap;
#endif
#if (defined(PARALLAXMAP) || (defined(NORMALMAP_PARALLAX) && defined(NORMALMAP))) && !defined(VERTEX_LIGHTING)
uniform float m_ParallaxHeight;
#endif
#ifdef LIGHTMAP
uniform sampler2D m_LightMap;
#endif
#ifdef NORMALMAP
uniform sampler2D m_NormalMap;
varying vec3 vTangent;
varying vec3 vBinormal;
#endif
varying vec3 vNormal;
#ifdef ALPHAMAP
uniform sampler2D m_AlphaMap;
#endif
#ifdef COLORRAMP
uniform sampler2D m_ColorRamp;
#endif
uniform float m_AlphaDiscardThreshold;
#ifndef VERTEX_LIGHTING
uniform float m_Shininess;
#ifdef USE_REFLECTION
uniform float m_ReflectionPower;
uniform float m_ReflectionIntensity;
varying vec4 refVec;
uniform ENVMAP m_EnvMap;
#endif
#endif
void main(){
vec2 newTexCoord;
#if (defined(PARALLAXMAP) || (defined(NORMALMAP_PARALLAX) && defined(NORMALMAP))) && !defined(VERTEX_LIGHTING)
#ifdef STEEP_PARALLAX
#ifdef NORMALMAP_PARALLAX
//parallax map is stored in the alpha channel of the normal map
newTexCoord = steepParallaxOffset(m_NormalMap, vViewDir, texCoord, m_ParallaxHeight);
#else
//parallax map is a texture
newTexCoord = steepParallaxOffset(m_ParallaxMap, vViewDir, texCoord, m_ParallaxHeight);
#endif
#else
#ifdef NORMALMAP_PARALLAX
//parallax map is stored in the alpha channel of the normal map
newTexCoord = classicParallaxOffset(m_NormalMap, vViewDir, texCoord, m_ParallaxHeight);
#else
//parallax map is a texture
newTexCoord = classicParallaxOffset(m_ParallaxMap, vViewDir, texCoord, m_ParallaxHeight);
#endif
#endif
#else
newTexCoord = texCoord;
#endif
#ifdef DIFFUSEMAP
vec4 diffuseColor = texture2D(m_DiffuseMap, newTexCoord);
#else
vec4 diffuseColor = vec4(1.0);
#endif
float alpha = DiffuseSum.a * diffuseColor.a;
#ifdef ALPHAMAP
alpha = alpha * texture2D(m_AlphaMap, newTexCoord).r;
#endif
#ifdef DISCARD_ALPHA
if(alpha < m_AlphaDiscardThreshold){
discard;
}
#endif
// ***********************
// Read from textures
// ***********************
#if defined(NORMALMAP) && !defined(VERTEX_LIGHTING)
vec4 normalHeight = texture2D(m_NormalMap, newTexCoord);
//Note the -2.0 and -1.0. We invert the green channel of the normal map,
//as it's complient with normal maps generated with blender.
//see http://hub.jmonkeyengine.org/forum/topic/parallax-mapping-fundamental-bug/#post-256898
//for more explanation.
vec3 normal = normalize((normalHeight.xyz * vec3(2.0,-2.0,2.0) - vec3(1.0,-1.0,1.0)));
#elif !defined(VERTEX_LIGHTING)
vec3 normal = normalize(vNormal);
#endif
#ifdef SPECULARMAP
vec4 specularColor = texture2D(m_SpecularMap, newTexCoord);
#else
vec4 specularColor = vec4(1.0);
#endif
#ifdef LIGHTMAP
vec3 lightMapColor;
#ifdef SEPARATE_TEXCOORD
lightMapColor = texture2D(m_LightMap, texCoord2).rgb;
#else
lightMapColor = texture2D(m_LightMap, texCoord).rgb;
#endif
specularColor.rgb *= lightMapColor;
diffuseColor.rgb *= lightMapColor;
#endif
#ifdef VERTEX_LIGHTING
gl_FragColor.rgb = AmbientSum * diffuseColor.rgb
+diffuseAccum.rgb *diffuseColor.rgb
+specularAccum.rgb * specularColor.rgb;
gl_FragColor.a=1.0;
#else
int i = 0;
gl_FragColor.rgb = AmbientSum * diffuseColor.rgb;
#ifdef USE_REFLECTION
vec4 refColor = Optics_GetEnvColor(m_EnvMap, refVec.xyz);
#endif
#ifdef NORMALMAP
mat3 tbnMat = mat3(normalize(vTangent.xyz) , normalize(vBinormal.xyz) , normalize(vNormal.xyz));
#endif
for( int i = 0;i < NB_LIGHTS; i+=3){
vec4 lightColor = g_LightData[i];
vec4 lightData1 = g_LightData[i+1];
vec4 lightDir;
vec3 lightVec;
lightComputeDir(vPos, lightColor.w, lightData1, lightDir,lightVec);
float spotFallOff = 1.0;
#if __VERSION__ >= 110
// allow use of control flow
if(lightColor.w > 1.0){
#endif
spotFallOff = computeSpotFalloff(g_LightData[i+2], lightVec);
#if __VERSION__ >= 110
}
#endif
#ifdef NORMALMAP
//Normal map -> lighting is computed in tangent space
lightDir.xyz = normalize(lightDir.xyz * tbnMat);
vec3 viewDir = normalize(-vPos.xyz * tbnMat);
#else
//no Normal map -> lighting is computed in view space
lightDir.xyz = normalize(lightDir.xyz);
vec3 viewDir = normalize(-vPos.xyz);
#endif
vec2 light = computeLighting(normal, viewDir, lightDir.xyz, lightDir.w * spotFallOff , m_Shininess);
#ifdef COLORRAMP
diffuseColor.rgb *= texture2D(m_ColorRamp, vec2(light.x, 0.0)).rgb;
specularColor.rgb *= texture2D(m_ColorRamp, vec2(light.y, 0.0)).rgb;
#endif
// Workaround, since it is not possible to modify varying variables
vec4 SpecularSum2 = vec4(SpecularSum, 1.0);
#ifdef USE_REFLECTION
// Interpolate light specularity toward reflection color
// Multiply result by specular map
specularColor = mix(SpecularSum2 * light.y, refColor, refVec.w) * specularColor;
SpecularSum2 = vec4(1.0);
light.y = 1.0;
#endif
gl_FragColor.rgb += DiffuseSum.rgb * lightColor.rgb * diffuseColor.rgb * vec3(light.x) +
SpecularSum2.rgb * specularColor.rgb * vec3(light.y);
}
#endif
gl_FragColor.a = alpha;
}

@ -0,0 +1,172 @@
#import "Common/ShaderLib/Instancing.glsllib"
#import "Common/ShaderLib/Skinning.glsllib"
#import "Common/ShaderLib/Lighting.glsllib"
#ifdef VERTEX_LIGHTING
#import "Common/ShaderLib/PhongLighting.glsllib"
#endif
uniform vec4 m_Ambient;
uniform vec4 m_Diffuse;
uniform vec4 m_Specular;
uniform float m_Shininess;
#if defined(VERTEX_LIGHTING)
uniform vec4 g_LightData[NB_LIGHTS];
#endif
uniform vec4 g_AmbientLightColor;
varying vec2 texCoord;
#ifdef SEPARATE_TEXCOORD
varying vec2 texCoord2;
attribute vec2 inTexCoord2;
#endif
varying vec3 AmbientSum;
varying vec4 DiffuseSum;
varying vec3 SpecularSum;
attribute vec3 inPosition;
attribute vec2 inTexCoord;
attribute vec3 inNormal;
#ifdef VERTEX_COLOR
attribute vec4 inColor;
#endif
#ifndef VERTEX_LIGHTING
varying vec3 vNormal;
varying vec3 vPos;
#ifdef NORMALMAP
attribute vec4 inTangent;
varying vec3 vTangent;
varying vec3 vBinormal;
#endif
#else
varying vec3 specularAccum;
varying vec4 diffuseAccum;
#endif
#ifdef USE_REFLECTION
uniform vec3 g_CameraPosition;
uniform vec3 m_FresnelParams;
varying vec4 refVec;
/**
* Input:
* attribute inPosition
* attribute inNormal
* uniform g_WorldMatrix
* uniform g_CameraPosition
*
* Output:
* varying refVec
*/
void computeRef(in vec4 modelSpacePos){
// vec3 worldPos = (g_WorldMatrix * modelSpacePos).xyz;
vec3 worldPos = TransformWorld(modelSpacePos).xyz;
vec3 I = normalize( g_CameraPosition - worldPos ).xyz;
// vec3 N = normalize( (g_WorldMatrix * vec4(inNormal, 0.0)).xyz );
vec3 N = normalize( TransformWorld(vec4(inNormal, 0.0)).xyz );
refVec.xyz = reflect(I, N);
refVec.w = m_FresnelParams.x + m_FresnelParams.y * pow(1.0 + dot(I, N), m_FresnelParams.z);
}
#endif
void main(){
vec4 modelSpacePos = vec4(inPosition, 1.0);
vec3 modelSpaceNorm = inNormal;
#if defined(NORMALMAP) && !defined(VERTEX_LIGHTING)
vec3 modelSpaceTan = inTangent.xyz;
#endif
#ifdef NUM_BONES
#if defined(NORMALMAP) && !defined(VERTEX_LIGHTING)
Skinning_Compute(modelSpacePos, modelSpaceNorm, modelSpaceTan);
#else
Skinning_Compute(modelSpacePos, modelSpaceNorm);
#endif
#endif
gl_Position = TransformWorldViewProjection(modelSpacePos);
texCoord = inTexCoord;
#ifdef SEPARATE_TEXCOORD
texCoord2 = inTexCoord2;
#endif
vec3 wvPosition = TransformWorldView(modelSpacePos).xyz;
vec3 wvNormal = normalize(TransformNormal(modelSpaceNorm));
vec3 viewDir = normalize(-wvPosition);
#if defined(NORMALMAP) && !defined(VERTEX_LIGHTING)
vTangent = TransformNormal(modelSpaceTan);
vBinormal = cross(wvNormal, vTangent)* inTangent.w;
vNormal = wvNormal;
vPos = wvPosition;
#elif !defined(VERTEX_LIGHTING)
vNormal = wvNormal;
vPos = wvPosition;
#endif
#ifdef MATERIAL_COLORS
AmbientSum = m_Ambient.rgb * g_AmbientLightColor.rgb;
SpecularSum = m_Specular.rgb;
DiffuseSum = m_Diffuse;
#else
AmbientSum = g_AmbientLightColor.rgb;
SpecularSum = vec3(0.0);
DiffuseSum = vec4(1.0);
#endif
#ifdef VERTEX_COLOR
AmbientSum *= inColor.rgb;
DiffuseSum *= inColor;
#endif
#ifdef VERTEX_LIGHTING
int i = 0;
diffuseAccum = vec4(0.0);
specularAccum = vec3(0.0);
vec4 diffuseColor;
vec3 specularColor;
for (int i =0;i < NB_LIGHTS; i+=3){
vec4 lightColor = g_LightData[i];
vec4 lightData1 = g_LightData[i+1];
DiffuseSum = vec4(1.0);
#ifdef MATERIAL_COLORS
diffuseColor = m_Diffuse * vec4(lightColor.rgb, 1.0);
specularColor = m_Specular.rgb * lightColor.rgb;
#else
diffuseColor = vec4(lightColor.rgb, 1.0);
specularColor = vec3(0.0);
#endif
vec4 lightDir;
vec3 lightVec;
lightComputeDir(wvPosition, lightColor.w, lightData1, lightDir, lightVec);
// lightDir = normalize(lightDir);
// lightVec = normalize(lightVec);
float spotFallOff = 1.0;
#if __VERSION__ >= 110
// allow use of control flow
if(lightColor.w > 1.0){
#endif
vec4 lightDirection = g_LightData[i+2];
spotFallOff = computeSpotFalloff(lightDirection, lightVec);
#if __VERSION__ >= 110
}
#endif
vec2 v = computeLighting(wvNormal, viewDir, lightDir.xyz, lightDir.w * spotFallOff, m_Shininess);
diffuseAccum +=v.x * diffuseColor;
specularAccum += v.y * specularColor;
}
#endif
#ifdef USE_REFLECTION
computeRef(modelSpacePos);
#endif
}

@ -1,48 +1,30 @@
#ifndef NUM_LIGHTS
#define NUM_LIGHTS 4
#endif
/*Common function for light calculations*/
uniform mat4 g_ViewMatrix;
uniform vec4 g_LightPosition[NUM_LIGHTS];
uniform vec4 g_g_LightColor[NUM_LIGHTS];
uniform float m_Shininess;
float Lighting_Diffuse(vec3 norm, vec3 lightdir){
return max(0.0, dot(norm, lightdir));
}
float Lighting_Specular(vec3 norm, vec3 viewdir, vec3 lightdir, float shiny){
vec3 refdir = reflect(-lightdir, norm);
return pow(max(dot(refdir, viewdir), 0.0), shiny);
}
void Lighting_Direction(vec3 worldPos, vec4 color, vec4 position, out vec4 lightDir){
float posLight = step(0.5, color.w);
/*
* Computes light direction
* lightType should be 0.0,1.0,2.0, repectively for Directional, point and spot lights.
* Outputs the light direction and the light half vector.
*/
void lightComputeDir(in vec3 worldPos, in float ligthType, in vec4 position, out vec4 lightDir, out vec3 lightVec){
float posLight = step(0.5, ligthType);
vec3 tempVec = position.xyz * sign(posLight - 0.5) - (worldPos * posLight);
lightVec = tempVec;
float dist = length(tempVec);
lightDir.w = clamp(1.0 - position.w * dist * posLight, 0.0, 1.0);
lightDir.xyz = tempVec / dist;
lightDir.xyz = tempVec / vec3(dist);
}
void Lighting_ComputePS(vec3 tanNormal, mat3 tbnMat,
int lightCount, out vec3 outDiffuse, out vec3 outSpecular){
// find tangent view dir & vert pos
vec3 tanViewDir = viewDir * tbnMat;
for (int i = 0; i < lightCount; i++){
// find light dir in tangent space, works for point & directional lights
vec4 wvLightPos = (g_ViewMatrix * vec4(g_LightPosition[i].xyz, g_LightColor[i].w));
wvLightPos.w = g_LightPosition[i].w;
vec4 tanLightDir;
Lighting_Direction(wvPosition, g_LightColor[i], wvLightPos, tanLightDir);
tanLightDir.xyz = tanLightDir.xyz * tbnMat;
vec3 lightScale = g_LightColor[i].rgb * tanLightDir.w;
float specular = Lighting_Specular(tanNormal, tanViewDir, tanLightDir.xyz, m_Shininess);
float diffuse = Lighting_Diffuse(tanNormal, tanLightDir.xyz);
outSpecular += specular * lightScale * step(0.01, diffuse) * g_LightColor[i].rgb;
outDiffuse += diffuse * lightScale * g_LightColor[i].rgb;
}
/*
* Computes the spot falloff for a spotlight
*/
float computeSpotFalloff(in vec4 lightDirection, in vec3 lightVector){
vec3 L=normalize(lightVector);
vec3 spotdir = normalize(lightDirection.xyz);
float curAngleCos = dot(-L, spotdir);
float innerAngleCos = floor(lightDirection.w) * 0.001;
float outerAngleCos = fract(lightDirection.w);
float innerMinusOuter = innerAngleCos - outerAngleCos;
return clamp((curAngleCos - outerAngleCos) / innerMinusOuter, step(lightDirection.w, 0.001), 1.0);
}

@ -0,0 +1,29 @@
/*Standard Phong ligting*/
/*
* Computes diffuse factor
*/
float lightComputeDiffuse(in vec3 norm, in vec3 lightdir){
return max(0.0, dot(norm, lightdir));
}
/*
* Computes specular factor
*/
float lightComputeSpecular(in vec3 norm, in vec3 viewdir, in vec3 lightdir, in float shiny){
vec3 R = reflect(-lightdir, norm);
return pow(max(dot(R, viewdir), 0.0), shiny);
}
/*
* Computes diffuse and specular factors and pack them in a vec2 (x=diffuse, y=specular)
*/
vec2 computeLighting(in vec3 norm, in vec3 viewDir, in vec3 lightDir, in float attenuation, in float shininess){
float diffuseFactor = lightComputeDiffuse(norm, lightDir);
float specularFactor = lightComputeSpecular(norm, viewDir, lightDir, shininess);
if (shininess <= 1.0) {
specularFactor = 0.0; // should be one instruction on most cards ..
}
specularFactor *= diffuseFactor;
return vec2(diffuseFactor, specularFactor) * vec2(attenuation);
}

@ -0,0 +1,255 @@
/*
* Copyright (c) 2009-2012 jMonkeyEngine
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of 'jMonkeyEngine' nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package jme3test.light;
import com.jme3.app.BasicProfilerState;
import com.jme3.app.SimpleApplication;
import com.jme3.font.BitmapText;
import com.jme3.input.KeyInput;
import com.jme3.input.controls.ActionListener;
import com.jme3.input.controls.KeyTrigger;
import com.jme3.light.AmbientLight;
import com.jme3.light.DirectionalLight;
import com.jme3.light.Light;
import com.jme3.light.LightList;
import com.jme3.light.PointLight;
import com.jme3.light.SpotLight;
import com.jme3.material.Material;
import com.jme3.material.TechniqueDef;
import com.jme3.math.ColorRGBA;
import com.jme3.math.FastMath;
import com.jme3.math.Quaternion;
import com.jme3.math.Vector3f;
import com.jme3.renderer.RenderManager;
import com.jme3.renderer.ViewPort;
import com.jme3.scene.Geometry;
import com.jme3.scene.LightNode;
import com.jme3.scene.Node;
import com.jme3.scene.Spatial;
import com.jme3.scene.control.AbstractControl;
import com.jme3.scene.shape.Box;
public class TestManyLightsSingle extends SimpleApplication {
public static void main(String[] args) {
TestManyLightsSingle app = new TestManyLightsSingle();
app.start();
}
TechniqueDef.LightMode lm = TechniqueDef.LightMode.MultiPass;
int lightNum = 6 ;
@Override
public void simpleInitApp() {
renderManager.setPreferredLightMode(lm);
renderManager.setSinglePassLightBatchSize(lightNum);
flyCam.setMoveSpeed(10);
Node scene = (Node) assetManager.loadModel("Scenes/ManyLights/Main.scene");
rootNode.attachChild(scene);
Node n = (Node) rootNode.getChild(0);
LightList lightList = n.getWorldLightList();
Geometry g = (Geometry) n.getChild("Grid-geom-1");
g.getMaterial().setColor("Ambient", new ColorRGBA(0.2f, 0.2f, 0.2f, 1f));
/* A colored lit cube. Needs light source! */
Box boxMesh = new Box(1f, 1f, 1f);
Geometry boxGeo = new Geometry("Colored Box", boxMesh);
Material boxMat = g.getMaterial().clone();
boxMat.setBoolean("UseMaterialColors", true);
boxMat.setColor("Ambient", new ColorRGBA(0.2f, 0.2f, 0.2f, 1f));
boxMat.setColor("Diffuse", ColorRGBA.Blue);
boxGeo.setMaterial(boxMat);
int nb = 0;
for (Light light : lightList) {
nb++;
PointLight p = (PointLight) light;
if (nb >60) {
n.removeLight(light);
} else {
LightNode ln = new LightNode("l", light);
n.attachChild(ln);
ln.setLocalTranslation(p.getPosition());
int rand = FastMath.nextRandomInt(0, 3);
switch (rand) {
case 0:
light.setColor(ColorRGBA.Red);
// ln.addControl(new MoveControl(5f));
break;
case 1:
light.setColor(ColorRGBA.Yellow);
// ln.addControl(new MoveControl(5f));
break;
case 2:
light.setColor(ColorRGBA.Green);
//ln.addControl(new MoveControl(-5f));
break;
case 3:
light.setColor(ColorRGBA.Orange);
//ln.addControl(new MoveControl(-5f));
break;
}
}
Geometry b = boxGeo.clone();
n.attachChild(b);
b.setLocalTranslation(p.getPosition().x, 2, p.getPosition().z);
}
// cam.setLocation(new Vector3f(3.1893547f, 17.977385f, 30.8378f));
// cam.setRotation(new Quaternion(0.14317635f, 0.82302624f, -0.23777823f, 0.49557027f));
cam.setLocation(new Vector3f(-1.8901939f, 29.34097f, 73.07533f));
cam.setRotation(new Quaternion(0.0021000702f, 0.971012f, -0.23886925f, 0.008527749f));
BasicProfilerState profiler = new BasicProfilerState(true);
profiler.setGraphScale(1000f);
// getStateManager().attach(profiler);
// guiNode.setCullHint(CullHint.Always);
flyCam.setDragToRotate(true);
flyCam.setMoveSpeed(50);
inputManager.addListener(new ActionListener() {
public void onAction(String name, boolean isPressed, float tpf) {
if (name.equals("toggle") && isPressed) {
if (lm == TechniqueDef.LightMode.SinglePass) {
lm = TechniqueDef.LightMode.MultiPass;
} else {
lm = TechniqueDef.LightMode.SinglePass;
}
renderManager.setPreferredLightMode(lm);
}
if (name.equals("lightsUp") && isPressed) {
lightNum++;
renderManager.setSinglePassLightBatchSize(lightNum);
helloText.setText("nb lights per batch : " + lightNum);
}
if (name.equals("lightsDown") && isPressed) {
lightNum--;
renderManager.setSinglePassLightBatchSize(lightNum);
helloText.setText("nb lights per batch : " + lightNum);
}
}
}, "toggle", "lightsUp", "lightsDown");
inputManager.addMapping("toggle", new KeyTrigger(KeyInput.KEY_SPACE));
inputManager.addMapping("lightsUp", new KeyTrigger(KeyInput.KEY_UP));
inputManager.addMapping("lightsDown", new KeyTrigger(KeyInput.KEY_DOWN));
SpotLight spot = new SpotLight();
spot.setDirection(new Vector3f(-1f, -1f, -1f).normalizeLocal());
spot.setColor(ColorRGBA.Blue.mult(5));
spot.setSpotOuterAngle(FastMath.DEG_TO_RAD * 20);
spot.setSpotInnerAngle(FastMath.DEG_TO_RAD * 5);
spot.setPosition(new Vector3f(10, 10, 20));
rootNode.addLight(spot);
DirectionalLight dl = new DirectionalLight();
dl.setDirection(new Vector3f(-1, -1, 1));
rootNode.addLight(dl);
AmbientLight al = new AmbientLight();
al.setColor(new ColorRGBA(0.2f, 0.2f, 0.2f, 1f));
rootNode.addLight(al);
/**
* Write text on the screen (HUD)
*/
guiNode.detachAllChildren();
guiFont = assetManager.loadFont("Interface/Fonts/Default.fnt");
helloText = new BitmapText(guiFont, false);
helloText.setSize(guiFont.getCharSet().getRenderedSize());
helloText.setText("nb lights per batch : " + lightNum);
helloText.setLocalTranslation(300, helloText.getLineHeight(), 0);
guiNode.attachChild(helloText);
}
BitmapText helloText;
long time;
long nbFrames;
long startTime = 0;
@Override
public void simpleUpdate(float tpf) {
// if (nbFrames == 4000) {
// startTime = System.nanoTime();
// }
// if (nbFrames > 4000) {
// time = System.nanoTime();
// float average = ((float) time - (float) startTime) / ((float) nbFrames - 4000f);
// helloText.setText("Average = " + average);
// }
// nbFrames++;
}
class MoveControl extends AbstractControl {
float direction;
Vector3f origPos = new Vector3f();
public MoveControl(float direction) {
this.direction = direction;
}
@Override
public void setSpatial(Spatial spatial) {
super.setSpatial(spatial); //To change body of generated methods, choose Tools | Templates.
origPos.set(spatial.getLocalTranslation());
}
float time = 0;
@Override
protected void controlUpdate(float tpf) {
time += tpf;
spatial.setLocalTranslation(origPos.x + FastMath.cos(time) * direction, origPos.y, origPos.z + FastMath.sin(time) * direction);
}
@Override
protected void controlRender(RenderManager rm, ViewPort vp) {
}
}
}

@ -0,0 +1,615 @@
#import "Common/ShaderLib/PhongLighting.glsllib"
#import "Common/ShaderLib/Lighting.glsllib"
uniform float m_Shininess;
varying vec4 AmbientSum;
varying vec4 DiffuseSum;
varying vec4 SpecularSum;
uniform mat4 g_ViewMatrix;
uniform vec4 g_LightData[NB_LIGHTS];
varying vec3 vTangent;
varying vec3 vBinormal;
varying vec3 vPos;
varying vec3 vNormal;
varying vec2 texCoord;
#ifdef DIFFUSEMAP
uniform sampler2D m_DiffuseMap;
#endif
#ifdef DIFFUSEMAP_1
uniform sampler2D m_DiffuseMap_1;
#endif
#ifdef DIFFUSEMAP_2
uniform sampler2D m_DiffuseMap_2;
#endif
#ifdef DIFFUSEMAP_3
uniform sampler2D m_DiffuseMap_3;
#endif
#ifdef DIFFUSEMAP_4
uniform sampler2D m_DiffuseMap_4;
#endif
#ifdef DIFFUSEMAP_5
uniform sampler2D m_DiffuseMap_5;
#endif
#ifdef DIFFUSEMAP_6
uniform sampler2D m_DiffuseMap_6;
#endif
#ifdef DIFFUSEMAP_7
uniform sampler2D m_DiffuseMap_7;
#endif
#ifdef DIFFUSEMAP_8
uniform sampler2D m_DiffuseMap_8;
#endif
#ifdef DIFFUSEMAP_9
uniform sampler2D m_DiffuseMap_9;
#endif
#ifdef DIFFUSEMAP_10
uniform sampler2D m_DiffuseMap_10;
#endif
#ifdef DIFFUSEMAP_11
uniform sampler2D m_DiffuseMap_11;
#endif
#ifdef DIFFUSEMAP_0_SCALE
uniform float m_DiffuseMap_0_scale;
#endif
#ifdef DIFFUSEMAP_1_SCALE
uniform float m_DiffuseMap_1_scale;
#endif
#ifdef DIFFUSEMAP_2_SCALE
uniform float m_DiffuseMap_2_scale;
#endif
#ifdef DIFFUSEMAP_3_SCALE
uniform float m_DiffuseMap_3_scale;
#endif
#ifdef DIFFUSEMAP_4_SCALE
uniform float m_DiffuseMap_4_scale;
#endif
#ifdef DIFFUSEMAP_5_SCALE
uniform float m_DiffuseMap_5_scale;
#endif
#ifdef DIFFUSEMAP_6_SCALE
uniform float m_DiffuseMap_6_scale;
#endif
#ifdef DIFFUSEMAP_7_SCALE
uniform float m_DiffuseMap_7_scale;
#endif
#ifdef DIFFUSEMAP_8_SCALE
uniform float m_DiffuseMap_8_scale;
#endif
#ifdef DIFFUSEMAP_9_SCALE
uniform float m_DiffuseMap_9_scale;
#endif
#ifdef DIFFUSEMAP_10_SCALE
uniform float m_DiffuseMap_10_scale;
#endif
#ifdef DIFFUSEMAP_11_SCALE
uniform float m_DiffuseMap_11_scale;
#endif
#ifdef ALPHAMAP
uniform sampler2D m_AlphaMap;
#endif
#ifdef ALPHAMAP_1
uniform sampler2D m_AlphaMap_1;
#endif
#ifdef ALPHAMAP_2
uniform sampler2D m_AlphaMap_2;
#endif
#ifdef NORMALMAP
uniform sampler2D m_NormalMap;
#endif
#ifdef NORMALMAP_1
uniform sampler2D m_NormalMap_1;
#endif
#ifdef NORMALMAP_2
uniform sampler2D m_NormalMap_2;
#endif
#ifdef NORMALMAP_3
uniform sampler2D m_NormalMap_3;
#endif
#ifdef NORMALMAP_4
uniform sampler2D m_NormalMap_4;
#endif
#ifdef NORMALMAP_5
uniform sampler2D m_NormalMap_5;
#endif
#ifdef NORMALMAP_6
uniform sampler2D m_NormalMap_6;
#endif
#ifdef NORMALMAP_7
uniform sampler2D m_NormalMap_7;
#endif
#ifdef NORMALMAP_8
uniform sampler2D m_NormalMap_8;
#endif
#ifdef NORMALMAP_9
uniform sampler2D m_NormalMap_9;
#endif
#ifdef NORMALMAP_10
uniform sampler2D m_NormalMap_10;
#endif
#ifdef NORMALMAP_11
uniform sampler2D m_NormalMap_11;
#endif
#ifdef TRI_PLANAR_MAPPING
varying vec4 wVertex;
varying vec3 wNormal;
#endif
#ifdef ALPHAMAP
vec4 calculateDiffuseBlend(in vec2 texCoord) {
vec4 alphaBlend = texture2D( m_AlphaMap, texCoord.xy );
#ifdef ALPHAMAP_1
vec4 alphaBlend1 = texture2D( m_AlphaMap_1, texCoord.xy );
#endif
#ifdef ALPHAMAP_2
vec4 alphaBlend2 = texture2D( m_AlphaMap_2, texCoord.xy );
#endif
vec4 diffuseColor = texture2D(m_DiffuseMap, texCoord * m_DiffuseMap_0_scale);
diffuseColor *= alphaBlend.r;
#ifdef DIFFUSEMAP_1
vec4 diffuseColor1 = texture2D(m_DiffuseMap_1, texCoord * m_DiffuseMap_1_scale);
diffuseColor = mix( diffuseColor, diffuseColor1, alphaBlend.g );
#endif
#ifdef DIFFUSEMAP_2
vec4 diffuseColor2 = texture2D(m_DiffuseMap_2, texCoord * m_DiffuseMap_2_scale);
diffuseColor = mix( diffuseColor, diffuseColor2, alphaBlend.b );
#endif
#ifdef DIFFUSEMAP_3
vec4 diffuseColor3 = texture2D(m_DiffuseMap_3, texCoord * m_DiffuseMap_3_scale);
diffuseColor = mix( diffuseColor, diffuseColor3, alphaBlend.a );
#endif
#ifdef ALPHAMAP_1
#ifdef DIFFUSEMAP_4
vec4 diffuseColor4 = texture2D(m_DiffuseMap_4, texCoord * m_DiffuseMap_4_scale);
diffuseColor = mix( diffuseColor, diffuseColor4, alphaBlend1.r );
#endif
#ifdef DIFFUSEMAP_5
vec4 diffuseColor5 = texture2D(m_DiffuseMap_5, texCoord * m_DiffuseMap_5_scale);
diffuseColor = mix( diffuseColor, diffuseColor5, alphaBlend1.g );
#endif
#ifdef DIFFUSEMAP_6
vec4 diffuseColor6 = texture2D(m_DiffuseMap_6, texCoord * m_DiffuseMap_6_scale);
diffuseColor = mix( diffuseColor, diffuseColor6, alphaBlend1.b );
#endif
#ifdef DIFFUSEMAP_7
vec4 diffuseColor7 = texture2D(m_DiffuseMap_7, texCoord * m_DiffuseMap_7_scale);
diffuseColor = mix( diffuseColor, diffuseColor7, alphaBlend1.a );
#endif
#endif
#ifdef ALPHAMAP_2
#ifdef DIFFUSEMAP_8
vec4 diffuseColor8 = texture2D(m_DiffuseMap_8, texCoord * m_DiffuseMap_8_scale);
diffuseColor = mix( diffuseColor, diffuseColor8, alphaBlend2.r );
#endif
#ifdef DIFFUSEMAP_9
vec4 diffuseColor9 = texture2D(m_DiffuseMap_9, texCoord * m_DiffuseMap_9_scale);
diffuseColor = mix( diffuseColor, diffuseColor9, alphaBlend2.g );
#endif
#ifdef DIFFUSEMAP_10
vec4 diffuseColor10 = texture2D(m_DiffuseMap_10, texCoord * m_DiffuseMap_10_scale);
diffuseColor = mix( diffuseColor, diffuseColor10, alphaBlend2.b );
#endif
#ifdef DIFFUSEMAP_11
vec4 diffuseColor11 = texture2D(m_DiffuseMap_11, texCoord * m_DiffuseMap_11_scale);
diffuseColor = mix( diffuseColor, diffuseColor11, alphaBlend2.a );
#endif
#endif
return diffuseColor;
}
vec3 calculateNormal(in vec2 texCoord) {
vec3 normal = vec3(0,0,1);
vec3 n = vec3(0,0,0);
vec4 alphaBlend = texture2D( m_AlphaMap, texCoord.xy );
#ifdef ALPHAMAP_1
vec4 alphaBlend1 = texture2D( m_AlphaMap_1, texCoord.xy );
#endif
#ifdef ALPHAMAP_2
vec4 alphaBlend2 = texture2D( m_AlphaMap_2, texCoord.xy );
#endif
#ifdef NORMALMAP
n = texture2D(m_NormalMap, texCoord * m_DiffuseMap_0_scale).xyz;
normal += n * alphaBlend.r;
#else
normal += vec3(0.5,0.5,1) * alphaBlend.r;
#endif
#ifdef NORMALMAP_1
n = texture2D(m_NormalMap_1, texCoord * m_DiffuseMap_1_scale).xyz;
normal += n * alphaBlend.g;
#else
normal += vec3(0.5,0.5,1) * alphaBlend.g;
#endif
#ifdef NORMALMAP_2
n = texture2D(m_NormalMap_2, texCoord * m_DiffuseMap_2_scale).xyz;
normal += n * alphaBlend.b;
#else
normal += vec3(0.5,0.5,1) * alphaBlend.b;
#endif
#ifdef NORMALMAP_3
n = texture2D(m_NormalMap_3, texCoord * m_DiffuseMap_3_scale).xyz;
normal += n * alphaBlend.a;
#else
normal += vec3(0.5,0.5,1) * alphaBlend.a;
#endif
#ifdef ALPHAMAP_1
#ifdef NORMALMAP_4
n = texture2D(m_NormalMap_4, texCoord * m_DiffuseMap_4_scale).xyz;
normal += n * alphaBlend1.r;
#endif
#ifdef NORMALMAP_5
n = texture2D(m_NormalMap_5, texCoord * m_DiffuseMap_5_scale).xyz;
normal += n * alphaBlend1.g;
#endif
#ifdef NORMALMAP_6
n = texture2D(m_NormalMap_6, texCoord * m_DiffuseMap_6_scale).xyz;
normal += n * alphaBlend1.b;
#endif
#ifdef NORMALMAP_7
n = texture2D(m_NormalMap_7, texCoord * m_DiffuseMap_7_scale).xyz;
normal += n * alphaBlend1.a;
#endif
#endif
#ifdef ALPHAMAP_2
#ifdef NORMALMAP_8
n = texture2D(m_NormalMap_8, texCoord * m_DiffuseMap_8_scale).xyz;
normal += n * alphaBlend2.r;
#endif
#ifdef NORMALMAP_9
n = texture2D(m_NormalMap_9, texCoord * m_DiffuseMap_9_scale);
normal += n * alphaBlend2.g;
#endif
#ifdef NORMALMAP_10
n = texture2D(m_NormalMap_10, texCoord * m_DiffuseMap_10_scale);
normal += n * alphaBlend2.b;
#endif
#ifdef NORMALMAP_11
n = texture2D(m_NormalMap_11, texCoord * m_DiffuseMap_11_scale);
normal += n * alphaBlend2.a;
#endif
#endif
normal = (normal.xyz * vec3(2.0) - vec3(1.0));
return normalize(normal);
}
#ifdef TRI_PLANAR_MAPPING
vec4 getTriPlanarBlend(in vec4 coords, in vec3 blending, in sampler2D map, in float scale) {
vec4 col1 = texture2D( map, coords.yz * scale);
vec4 col2 = texture2D( map, coords.xz * scale);
vec4 col3 = texture2D( map, coords.xy * scale);
// blend the results of the 3 planar projections.
vec4 tex = col1 * blending.x + col2 * blending.y + col3 * blending.z;
return tex;
}
vec4 calculateTriPlanarDiffuseBlend(in vec3 wNorm, in vec4 wVert, in vec2 texCoord) {
// tri-planar texture bending factor for this fragment's normal
vec3 blending = abs( wNorm );
blending = (blending -0.2) * 0.7;
blending = normalize(max(blending, 0.00001)); // Force weights to sum to 1.0 (very important!)
float b = (blending.x + blending.y + blending.z);
blending /= vec3(b, b, b);
// texture coords
vec4 coords = wVert;
// blend the results of the 3 planar projections.
vec4 tex0 = getTriPlanarBlend(coords, blending, m_DiffuseMap, m_DiffuseMap_0_scale);
#ifdef DIFFUSEMAP_1
// blend the results of the 3 planar projections.
vec4 tex1 = getTriPlanarBlend(coords, blending, m_DiffuseMap_1, m_DiffuseMap_1_scale);
#endif
#ifdef DIFFUSEMAP_2
// blend the results of the 3 planar projections.
vec4 tex2 = getTriPlanarBlend(coords, blending, m_DiffuseMap_2, m_DiffuseMap_2_scale);
#endif
#ifdef DIFFUSEMAP_3
// blend the results of the 3 planar projections.
vec4 tex3 = getTriPlanarBlend(coords, blending, m_DiffuseMap_3, m_DiffuseMap_3_scale);
#endif
#ifdef DIFFUSEMAP_4
// blend the results of the 3 planar projections.
vec4 tex4 = getTriPlanarBlend(coords, blending, m_DiffuseMap_4, m_DiffuseMap_4_scale);
#endif
#ifdef DIFFUSEMAP_5
// blend the results of the 3 planar projections.
vec4 tex5 = getTriPlanarBlend(coords, blending, m_DiffuseMap_5, m_DiffuseMap_5_scale);
#endif
#ifdef DIFFUSEMAP_6
// blend the results of the 3 planar projections.
vec4 tex6 = getTriPlanarBlend(coords, blending, m_DiffuseMap_6, m_DiffuseMap_6_scale);
#endif
#ifdef DIFFUSEMAP_7
// blend the results of the 3 planar projections.
vec4 tex7 = getTriPlanarBlend(coords, blending, m_DiffuseMap_7, m_DiffuseMap_7_scale);
#endif
#ifdef DIFFUSEMAP_8
// blend the results of the 3 planar projections.
vec4 tex8 = getTriPlanarBlend(coords, blending, m_DiffuseMap_8, m_DiffuseMap_8_scale);
#endif
#ifdef DIFFUSEMAP_9
// blend the results of the 3 planar projections.
vec4 tex9 = getTriPlanarBlend(coords, blending, m_DiffuseMap_9, m_DiffuseMap_9_scale);
#endif
#ifdef DIFFUSEMAP_10
// blend the results of the 3 planar projections.
vec4 tex10 = getTriPlanarBlend(coords, blending, m_DiffuseMap_10, m_DiffuseMap_10_scale);
#endif
#ifdef DIFFUSEMAP_11
// blend the results of the 3 planar projections.
vec4 tex11 = getTriPlanarBlend(coords, blending, m_DiffuseMap_11, m_DiffuseMap_11_scale);
#endif
vec4 alphaBlend = texture2D( m_AlphaMap, texCoord.xy );
#ifdef ALPHAMAP_1
vec4 alphaBlend1 = texture2D( m_AlphaMap_1, texCoord.xy );
#endif
#ifdef ALPHAMAP_2
vec4 alphaBlend2 = texture2D( m_AlphaMap_2, texCoord.xy );
#endif
vec4 diffuseColor = tex0 * alphaBlend.r;
#ifdef DIFFUSEMAP_1
diffuseColor = mix( diffuseColor, tex1, alphaBlend.g );
#endif
#ifdef DIFFUSEMAP_2
diffuseColor = mix( diffuseColor, tex2, alphaBlend.b );
#endif
#ifdef DIFFUSEMAP_3
diffuseColor = mix( diffuseColor, tex3, alphaBlend.a );
#endif
#ifdef ALPHAMAP_1
#ifdef DIFFUSEMAP_4
diffuseColor = mix( diffuseColor, tex4, alphaBlend1.r );
#endif
#ifdef DIFFUSEMAP_5
diffuseColor = mix( diffuseColor, tex5, alphaBlend1.g );
#endif
#ifdef DIFFUSEMAP_6
diffuseColor = mix( diffuseColor, tex6, alphaBlend1.b );
#endif
#ifdef DIFFUSEMAP_7
diffuseColor = mix( diffuseColor, tex7, alphaBlend1.a );
#endif
#endif
#ifdef ALPHAMAP_2
#ifdef DIFFUSEMAP_8
diffuseColor = mix( diffuseColor, tex8, alphaBlend2.r );
#endif
#ifdef DIFFUSEMAP_9
diffuseColor = mix( diffuseColor, tex9, alphaBlend2.g );
#endif
#ifdef DIFFUSEMAP_10
diffuseColor = mix( diffuseColor, tex10, alphaBlend2.b );
#endif
#ifdef DIFFUSEMAP_11
diffuseColor = mix( diffuseColor, tex11, alphaBlend2.a );
#endif
#endif
return diffuseColor;
}
vec3 calculateNormalTriPlanar(in vec3 wNorm, in vec4 wVert,in vec2 texCoord) {
// tri-planar texture bending factor for this fragment's world-space normal
vec3 blending = abs( wNorm );
blending = (blending -0.2) * 0.7;
blending = normalize(max(blending, 0.00001)); // Force weights to sum to 1.0 (very important!)
float b = (blending.x + blending.y + blending.z);
blending /= vec3(b, b, b);
// texture coords
vec4 coords = wVert;
vec4 alphaBlend = texture2D( m_AlphaMap, texCoord.xy );
#ifdef ALPHAMAP_1
vec4 alphaBlend1 = texture2D( m_AlphaMap_1, texCoord.xy );
#endif
#ifdef ALPHAMAP_2
vec4 alphaBlend2 = texture2D( m_AlphaMap_2, texCoord.xy );
#endif
vec3 normal = vec3(0,0,1);
vec3 n = vec3(0,0,0);
#ifdef NORMALMAP
n = getTriPlanarBlend(coords, blending, m_NormalMap, m_DiffuseMap_0_scale).xyz;
normal += n * alphaBlend.r;
#else
normal += vec3(0.5,0.5,1) * alphaBlend.r;
#endif
#ifdef NORMALMAP_1
n = getTriPlanarBlend(coords, blending, m_NormalMap_1, m_DiffuseMap_1_scale).xyz;
normal += n * alphaBlend.g;
#else
normal += vec3(0.5,0.5,1) * alphaBlend.g;
#endif
#ifdef NORMALMAP_2
n = getTriPlanarBlend(coords, blending, m_NormalMap_2, m_DiffuseMap_2_scale).xyz;
normal += n * alphaBlend.b;
#else
normal += vec3(0.5,0.5,1) * alphaBlend.b;
#endif
#ifdef NORMALMAP_3
n = getTriPlanarBlend(coords, blending, m_NormalMap_3, m_DiffuseMap_3_scale).xyz;
normal += n * alphaBlend.a;
#else
normal += vec3(0.5,0.5,1) * alphaBlend.a;
#endif
#ifdef ALPHAMAP_1
#ifdef NORMALMAP_4
n = getTriPlanarBlend(coords, blending, m_NormalMap_4, m_DiffuseMap_4_scale).xyz;
normal += n * alphaBlend1.r;
#else
normal += vec3(0.5,0.5,1) * alphaBlend.r;
#endif
#ifdef NORMALMAP_5
n = getTriPlanarBlend(coords, blending, m_NormalMap_5, m_DiffuseMap_5_scale).xyz;
normal += n * alphaBlend1.g;
#else
normal += vec3(0.5,0.5,1) * alphaBlend.g;
#endif
#ifdef NORMALMAP_6
n = getTriPlanarBlend(coords, blending, m_NormalMap_6, m_DiffuseMap_6_scale).xyz;
normal += n * alphaBlend1.b;
#else
normal += vec3(0.5,0.5,1) * alphaBlend.b;
#endif
#ifdef NORMALMAP_7
n = getTriPlanarBlend(coords, blending, m_NormalMap_7, m_DiffuseMap_7_scale).xyz;
normal += n * alphaBlend1.a;
#else
normal += vec3(0.5,0.5,1) * alphaBlend.a;
#endif
#endif
#ifdef ALPHAMAP_2
#ifdef NORMALMAP_8
n = getTriPlanarBlend(coords, blending, m_NormalMap_8, m_DiffuseMap_8_scale).xyz;
normal += n * alphaBlend2.r;
#else
normal += vec3(0.5,0.5,1) * alphaBlend.r;
#endif
#ifdef NORMALMAP_9
n = getTriPlanarBlend(coords, blending, m_NormalMap_9, m_DiffuseMap_9_scale).xyz;
normal += n * alphaBlend2.g;
#else
normal += vec3(0.5,0.5,1) * alphaBlend.g;
#endif
#ifdef NORMALMAP_10
n = getTriPlanarBlend(coords, blending, m_NormalMap_10, m_DiffuseMap_10_scale).xyz;
normal += n * alphaBlend2.b;
#else
normal += vec3(0.5,0.5,1) * alphaBlend.b;
#endif
#ifdef NORMALMAP_11
n = getTriPlanarBlend(coords, blending, m_NormalMap_11, m_DiffuseMap_11_scale).xyz;
normal += n * alphaBlend2.a;
#else
normal += vec3(0.5,0.5,1) * alphaBlend.a;
#endif
#endif
normal = (normal.xyz * vec3(2.0) - vec3(1.0));
return normalize(normal);
}
#endif
#endif
void main(){
//----------------------
// diffuse calculations
//----------------------
#ifdef DIFFUSEMAP
#ifdef ALPHAMAP
#ifdef TRI_PLANAR_MAPPING
vec4 diffuseColor = calculateTriPlanarDiffuseBlend(wNormal, wVertex, texCoord);
#else
vec4 diffuseColor = calculateDiffuseBlend(texCoord);
#endif
#else
vec4 diffuseColor = texture2D(m_DiffuseMap, texCoord);
#endif
#else
vec4 diffuseColor = vec4(1.0);
#endif
//---------------------
// normal calculations
//---------------------
#if defined(NORMALMAP) || defined(NORMALMAP_1) || defined(NORMALMAP_2) || defined(NORMALMAP_3) || defined(NORMALMAP_4) || defined(NORMALMAP_5) || defined(NORMALMAP_6) || defined(NORMALMAP_7) || defined(NORMALMAP_8) || defined(NORMALMAP_9) || defined(NORMALMAP_10) || defined(NORMALMAP_11)
#ifdef TRI_PLANAR_MAPPING
vec3 normal = calculateNormalTriPlanar(wNormal, wVertex, texCoord);
#else
vec3 normal = calculateNormal(texCoord);
#endif
mat3 tbnMat = mat3(normalize(vTangent.xyz) , normalize(vBinormal.xyz) , normalize(vNormal.xyz));
#else
vec3 normal = vNormal;
#endif
//-----------------------
// lighting calculations
//-----------------------
gl_FragColor = AmbientSum * diffuseColor;
for( int i = 0;i < NB_LIGHTS; i+=3){
vec4 lightColor = g_LightData[i];
vec4 lightData1 = g_LightData[i+1];
vec4 lightDir;
vec3 lightVec;
lightComputeDir(vPos, lightColor.w, lightData1, lightDir, lightVec);
float spotFallOff = 1.0;
#if __VERSION__ >= 110
// allow use of control flow
if(lightColor.w > 1.0){
#endif
spotFallOff = computeSpotFalloff(g_LightData[i+2], lightVec);
#if __VERSION__ >= 110
}
#endif
#ifdef NORMALMAP
//Normal map -> lighting is computed in tangent space
lightDir.xyz = normalize(lightDir.xyz * tbnMat);
vec3 viewDir = normalize(-vPos.xyz * tbnMat);
#else
//no Normal map -> lighting is computed in view space
lightDir.xyz = normalize(lightDir.xyz);
vec3 viewDir = normalize(-vPos.xyz);
#endif
vec2 light = computeLighting(normal, viewDir, lightDir.xyz, lightDir.w * spotFallOff, m_Shininess);
gl_FragColor.rgb += DiffuseSum.rgb * lightColor.rgb * diffuseColor.rgb * vec3(light.x) +
SpecularSum.rgb * vec3(light.y);
}
}

@ -0,0 +1,66 @@
uniform mat4 g_WorldViewProjectionMatrix;
uniform mat4 g_WorldViewMatrix;
uniform mat3 g_NormalMatrix;
uniform mat4 g_ViewMatrix;
uniform vec4 g_AmbientLightColor;
attribute vec3 inPosition;
attribute vec3 inNormal;
attribute vec2 inTexCoord;
attribute vec4 inTangent;
varying vec3 vNormal;
varying vec2 texCoord;
varying vec3 vPos;
varying vec3 vTangent;
varying vec3 vBinormal;
varying vec4 AmbientSum;
varying vec4 DiffuseSum;
varying vec4 SpecularSum;
#ifdef TRI_PLANAR_MAPPING
varying vec4 wVertex;
varying vec3 wNormal;
#endif
void main(){
vec4 pos = vec4(inPosition, 1.0);
gl_Position = g_WorldViewProjectionMatrix * pos;
#ifdef TERRAIN_GRID
texCoord = inTexCoord * 2.0;
#else
texCoord = inTexCoord;
#endif
vec3 wvPosition = (g_WorldViewMatrix * pos).xyz;
vec3 wvNormal = normalize(g_NormalMatrix * inNormal);
//--------------------------
// specific to normal maps:
//--------------------------
#if defined(NORMALMAP) || defined(NORMALMAP_1) || defined(NORMALMAP_2) || defined(NORMALMAP_3) || defined(NORMALMAP_4) || defined(NORMALMAP_5) || defined(NORMALMAP_6) || defined(NORMALMAP_7) || defined(NORMALMAP_8) || defined(NORMALMAP_9) || defined(NORMALMAP_10) || defined(NORMALMAP_11)
vTangent = g_NormalMatrix * inTangent.xyz;
vBinormal = cross(wvNormal, vTangent)* inTangent.w;
#endif
//-------------------------
// general to all lighting
//-------------------------
vNormal = wvNormal;
vPos = wvPosition;
AmbientSum = g_AmbientLightColor;
DiffuseSum = vec4(1.0);
SpecularSum = vec4(0.0);
#ifdef TRI_PLANAR_MAPPING
wVertex = vec4(inPosition,0.0);
wNormal = inNormal;
#endif
}

@ -1,3 +1,5 @@
#import "Common/ShaderLib/PhongLighting.glsllib"
#import "Common/ShaderLib/Lighting.glsllib"
uniform float m_Shininess;
uniform vec4 g_LightDirection;
@ -145,54 +147,6 @@ varying vec3 lightVec;
varying vec3 wNormal;
#endif
float tangDot(in vec3 v1, in vec3 v2){
float d = dot(v1,v2);
#ifdef V_TANGENT
d = 1.0 - d*d;
return step(0.0, d) * sqrt(d);
#else
return d;
#endif
}
float lightComputeDiffuse(in vec3 norm, in vec3 lightdir, in vec3 viewdir){
return max(0.0, dot(norm, lightdir));
}
float lightComputeSpecular(in vec3 norm, in vec3 viewdir, in vec3 lightdir, in float shiny){
#ifdef WARDISO
// Isotropic Ward
vec3 halfVec = normalize(viewdir + lightdir);
float NdotH = max(0.001, tangDot(norm, halfVec));
float NdotV = max(0.001, tangDot(norm, viewdir));
float NdotL = max(0.001, tangDot(norm, lightdir));
float a = tan(acos(NdotH));
float p = max(shiny/128.0, 0.001);
return NdotL * (1.0 / (4.0*3.14159265*p*p)) * (exp(-(a*a)/(p*p)) / (sqrt(NdotV * NdotL)));
#else
// Standard Phong
vec3 R = reflect(-lightdir, norm);
return pow(max(tangDot(R, viewdir), 0.0), shiny);
#endif
}
vec2 computeLighting(in vec3 wvPos, in vec3 wvNorm, in vec3 wvViewDir, in vec3 wvLightDir){
float diffuseFactor = lightComputeDiffuse(wvNorm, wvLightDir, wvViewDir);
float specularFactor = lightComputeSpecular(wvNorm, wvViewDir, wvLightDir, m_Shininess);
if (m_Shininess <= 1.0) {
specularFactor = 0.0; // should be one instruction on most cards ..
}
float att = vLightDir.w;
return vec2(diffuseFactor, specularFactor) * vec2(att);
}
#ifdef ALPHAMAP
vec4 calculateDiffuseBlend(in vec2 texCoord) {
@ -648,7 +602,7 @@ void main(){
vec4 lightDir = vLightDir;
lightDir.xyz = normalize(lightDir.xyz);
vec2 light = computeLighting(vPosition, normal, vViewDir.xyz, lightDir.xyz)*spotFallOff;
vec2 light = computeLighting(normal, vViewDir.xyz, lightDir.xyz,lightDir.w*spotFallOff,m_Shininess);
vec4 specularColor = vec4(1.0);

@ -163,6 +163,70 @@ MaterialDef Terrain Lighting {
}
}
Technique {
LightMode SinglePass
VertexShader GLSL100: Common/MatDefs/Terrain/SPTerrainLighting.vert
FragmentShader GLSL100: Common/MatDefs/Terrain/SPTerrainLighting.frag
WorldParameters {
WorldViewProjectionMatrix
NormalMatrix
WorldViewMatrix
ViewMatrix
}
Defines {
TRI_PLANAR_MAPPING : useTriPlanarMapping
TERRAIN_GRID : isTerrainGrid
WARDISO : WardIso
DIFFUSEMAP : DiffuseMap
DIFFUSEMAP_1 : DiffuseMap_1
DIFFUSEMAP_2 : DiffuseMap_2
DIFFUSEMAP_3 : DiffuseMap_3
DIFFUSEMAP_4 : DiffuseMap_4
DIFFUSEMAP_5 : DiffuseMap_5
DIFFUSEMAP_6 : DiffuseMap_6
DIFFUSEMAP_7 : DiffuseMap_7
DIFFUSEMAP_8 : DiffuseMap_8
DIFFUSEMAP_9 : DiffuseMap_9
DIFFUSEMAP_10 : DiffuseMap_10
DIFFUSEMAP_11 : DiffuseMap_11
NORMALMAP : NormalMap
NORMALMAP_1 : NormalMap_1
NORMALMAP_2 : NormalMap_2
NORMALMAP_3 : NormalMap_3
NORMALMAP_4 : NormalMap_4
NORMALMAP_5 : NormalMap_5
NORMALMAP_6 : NormalMap_6
NORMALMAP_7 : NormalMap_7
NORMALMAP_8 : NormalMap_8
NORMALMAP_9 : NormalMap_9
NORMALMAP_10 : NormalMap_10
NORMALMAP_11 : NormalMap_11
SPECULARMAP : SpecularMap
ALPHAMAP : AlphaMap
ALPHAMAP_1 : AlphaMap_1
ALPHAMAP_2 : AlphaMap_2
DIFFUSEMAP_0_SCALE : DiffuseMap_0_scale
DIFFUSEMAP_1_SCALE : DiffuseMap_1_scale
DIFFUSEMAP_2_SCALE : DiffuseMap_2_scale
DIFFUSEMAP_3_SCALE : DiffuseMap_3_scale
DIFFUSEMAP_4_SCALE : DiffuseMap_4_scale
DIFFUSEMAP_5_SCALE : DiffuseMap_5_scale
DIFFUSEMAP_6_SCALE : DiffuseMap_6_scale
DIFFUSEMAP_7_SCALE : DiffuseMap_7_scale
DIFFUSEMAP_8_SCALE : DiffuseMap_8_scale
DIFFUSEMAP_9_SCALE : DiffuseMap_9_scale
DIFFUSEMAP_10_SCALE : DiffuseMap_10_scale
DIFFUSEMAP_11_SCALE : DiffuseMap_11_scale
}
}
Technique PreShadow {
VertexShader GLSL100 : Common/MatDefs/Shadow/PreShadow.vert

@ -1,3 +1,5 @@
#import "Common/ShaderLib/Lighting.glsllib"
uniform mat4 g_WorldViewProjectionMatrix;
uniform mat4 g_WorldViewMatrix;
uniform mat3 g_NormalMatrix;
@ -34,16 +36,6 @@ varying vec4 SpecularSum;
varying vec3 wNormal;
#endif
// JME3 lights in world space
void lightComputeDir(in vec3 worldPos, in vec4 color, in vec4 position, out vec4 lightDir){
float posLight = step(0.5, color.w);
vec3 tempVec = position.xyz * sign(posLight - 0.5) - (worldPos * posLight);
lightVec.xyz = tempVec;
float dist = length(tempVec);
lightDir.w = clamp(1.0 - position.w * dist * posLight, 0.0, 1.0);
lightDir.xyz = tempVec / vec3(dist);
}
void main(){
vec4 pos = vec4(inPosition, 1.0);
@ -69,14 +61,14 @@ void main(){
vec3 wvTangent = normalize(g_NormalMatrix * inTangent.xyz);
vec3 wvBinormal = cross(wvNormal, wvTangent);
mat3 tbnMat = mat3(wvTangent, wvBinormal * -inTangent.w,wvNormal);
mat3 tbnMat = mat3(wvTangent, wvBinormal * inTangent.w,wvNormal);
vPosition = wvPosition * tbnMat;
vViewDir = viewDir * tbnMat;
lightComputeDir(wvPosition, lightColor, wvLightPos, vLightDir);
lightComputeDir(wvPosition, lightColor.w, wvLightPos, vLightDir, lightVec);
vLightDir.xyz = (vLightDir.xyz * tbnMat).xyz;
#else
//-------------------------
// general to all lighting
//-------------------------
@ -85,16 +77,11 @@ void main(){
vPosition = wvPosition;
vViewDir = viewDir;
lightComputeDir(wvPosition, lightColor, wvLightPos, vLightDir);
lightComputeDir(wvPosition, lightColor.w, wvLightPos, vLightDir, lightVec);
#endif
//computing spot direction in view space and unpacking spotlight cos
// spotVec=(g_ViewMatrix *vec4(g_LightDirection.xyz,0.0) );
// spotVec.w=floor(g_LightDirection.w)*0.001;
// lightVec.w = fract(g_LightDirection.w);
AmbientSum = vec4(0.2, 0.2, 0.2, 1.0) * g_AmbientLightColor; // Default: ambient color is dark gray
AmbientSum = g_AmbientLightColor; // Default: ambient color is dark gray
DiffuseSum = lightColor;
SpecularSum = lightColor;

Loading…
Cancel
Save