Support for image sphere projection on a mesh.

git-svn-id: https://jmonkeyengine.googlecode.com/svn/trunk@8092 75d07b2b-3a1a-0410-a2c5-0572b91ccdca
3.0
Kae..pl 14 years ago
parent 895e02f2a6
commit 17392d2cf8
  1. 5
      engine/src/blender/com/jme3/scene/plugins/blender/textures/UVCoordinatesGenerator.java
  2. 101
      engine/src/blender/com/jme3/scene/plugins/blender/textures/UVProjectionGenerator.java

@ -101,7 +101,7 @@ public class UVCoordinatesGenerator {
VertexBuffer result = new VertexBuffer(VertexBuffer.Type.TexCoord);
Mesh mesh = geometries.get(0).getMesh();
BoundingBox bb = UVCoordinatesGenerator.getBoundingBox(geometries);
switch (texco) {
case TEXCO_ORCO:
float[] uvCoordinates = null;
@ -118,7 +118,8 @@ public class UVCoordinatesGenerator {
uvCoordinates = UVProjectionGenerator.tubeProjection(mesh, bt);
break;
case PROJECTION_SPHERE:
uvCoordinates = UVProjectionGenerator.sphereProjection(mesh, bb);
BoundingSphere bs = UVCoordinatesGenerator.getBoundingSphere(geometries);
uvCoordinates = UVProjectionGenerator.sphereProjection(mesh, bs);
break;
default:
throw new IllegalStateException("Unknown projection type: " + projection);

@ -3,6 +3,7 @@ package com.jme3.scene.plugins.blender.textures;
import java.nio.FloatBuffer;
import com.jme3.bounding.BoundingBox;
import com.jme3.bounding.BoundingSphere;
import com.jme3.math.FastMath;
import com.jme3.math.Triangle;
import com.jme3.math.Vector3f;
@ -172,55 +173,55 @@ import com.jme3.scene.plugins.blender.textures.UVCoordinatesGenerator.BoundingTu
* the bounding box for projecting
* @return UV coordinates after the projection
*/
public static float[] sphereProjection(Mesh mesh, BoundingBox bb) {
return null;// TODO: implement
// Vector2f[] uvTable = new Vector2f[vertexList.size()];
// Ray ray = new Ray();
// CollisionResults cr = new CollisionResults();
// Vector3f yVec = new Vector3f();
// Vector3f zVec = new Vector3f();
// for(Geometry geom : geometries) {
// if(materialHelper.hasTexture(geom.getMaterial())) {//generate only
// when material has a texture
// geom.getMesh().updateBound();
// BoundingSphere bs = this.getBoundingSphere(geom.getMesh());
// float r2 = bs.getRadius() * bs.getRadius();
// yVec.set(0, -bs.getRadius(), 0);
// zVec.set(0, 0, -bs.getRadius());
// Vector3f center = bs.getCenter();
// ray.setOrigin(center);
// //we cast each vertex of the current mesh on the bounding box to
// determine the UV-coordinates
// for(int i=0;i<geom.getMesh().getIndexBuffer().size();++i) {
// int index = geom.getMesh().getIndexBuffer().get(i);
//
// ray.setOrigin(vertexList.get(index));
// ray.setDirection(normalList.get(index));
//
// //finding collision point
// cr.clear();
// bs.collideWith(ray, cr);//there is ALWAYS one collision
// Vector3f p = cr.getCollision(0).getContactPoint();
// p.subtractLocal(center);
// //arcLength = FastMath.acos(p.dot(yVec)/(p.length * yVec.length)) * r
// <- an arc length on the sphere (from top to the point on
// the sphere)
// //but yVec.length == r and p.length == r so: arcLength =
// FastMath.acos(p.dot(yVec)/r^2)/r
// //U coordinate is as follows: u = arcLength / PI*r
// //so to compute it faster we just write: u =
// FastMath.acos(p.dot(yVec)/r^2) / PI;
// float u = FastMath.acos(p.dot(yVec)/r2) / FastMath.PI;
// //we use similiar method to compute v
// //the only difference is that we need to cast the p vector on ZX
// plane
// //and use its length instead of r
// p.y = 0;
// float v = FastMath.acos(p.dot(zVec)/(bs.getRadius()*p.length())) /
// FastMath.PI;
// uvTable[index] = new Vector2f(u, v);
// }
// }
// }
public static float[] sphereProjection(Mesh mesh, BoundingSphere bs) {
FloatBuffer positions = mesh.getFloatBuffer(VertexBuffer.Type.Position);
float[] uvCoordinates = new float[positions.limit() / 3 * 2];
Vector3f v = new Vector3f();
float cx = bs.getCenter().x, cy = bs.getCenter().y, cz = bs.getCenter().z;
Vector3f uBase = new Vector3f(0, -1, 0);
Vector3f vBase = new Vector3f(0, 0, -1);
for (int i = 0, j = 0; i < positions.limit(); i += 3, j += 2) {
// calculating U
v.set(positions.get(i)-cx, positions.get(i + 1)-cy, 0);
v.normalizeLocal();
float angle = v.angleBetween(uBase);// result between [0; PI]
if (v.x < 0) {// the angle should be greater than PI, we're on the other part of the image then
angle = FastMath.TWO_PI - angle;
}
uvCoordinates[j] = angle / FastMath.TWO_PI;
// calculating V
v.set(positions.get(i)-cx, positions.get(i + 1)-cy, positions.get(i + 2)-cz);
v.normalizeLocal();
angle = v.angleBetween(vBase);// result between [0; PI]
uvCoordinates[j+1] = angle / FastMath.PI;
}
//looking for splitted triangles
Triangle triangle = new Triangle();
for(int i=0;i<mesh.getTriangleCount();++i) {
mesh.getTriangle(i, triangle);
float sgn1 = Math.signum(triangle.get1().x-cx);
float sgn2 = Math.signum(triangle.get2().x-cx);
float sgn3 = Math.signum(triangle.get3().x-cx);
float xSideFactor = sgn1 + sgn2 + sgn3;
float ySideFactor = Math.signum(triangle.get1().y-cy)+
Math.signum(triangle.get2().y-cy)+
Math.signum(triangle.get3().y-cy);
if((xSideFactor>-3 || xSideFactor<3) && ySideFactor<0) {//the triangle is on the splitting plane
//indexOfUcoord = (indexOfTriangle*3 + indexOfTrianglesVertex)*2
if(sgn1==1.0f) {
uvCoordinates[i*3*2] += 1.0f;
}
if(sgn2==1.0f) {
uvCoordinates[(i*3+1)*2] += 1.0f;
}
if(sgn3==1.0f) {
uvCoordinates[(i*3+2)*2] += 1.0f;
}
}
}
return uvCoordinates;
}
}

Loading…
Cancel
Save