444 lines
13 KiB
Java
Raw Normal View History

/*
* Copyright (c) 2009-2018 jMonkeyEngine
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of 'jMonkeyEngine' nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package com.jme3.bullet.collision;
import com.jme3.math.Vector3f;
import com.jme3.scene.Spatial;
import java.util.EventObject;
/**
* An event that describes a collision in the physics world.
* <p>
* Do not retain this object, as it will be reused after the collision() method
* returns. Copy any data you need during the collide() method.
*
* @author normenhansen
*/
public class PhysicsCollisionEvent extends EventObject {
/**
* type value to indicate a new event
*/
public static final int TYPE_ADDED = 0;
/**
* type value to indicate an event that has been added to a PhysicsSpace
* queue
*/
public static final int TYPE_PROCESSED = 1;
/**
* type value to indicate a cleaned/destroyed event
*/
public static final int TYPE_DESTROYED = 2;
/**
* type value that indicates the event's status
*/
private int type;
/**
* 1st involved object
*/
private PhysicsCollisionObject nodeA;
/**
* 2nd involved object
*/
private PhysicsCollisionObject nodeB;
/**
* Bullet identifier of the btManifoldPoint
*/
private long manifoldPointObjectId = 0;
/**
* Instantiate a collision event.
*
* @param type event type (0=added/1=processed/2=destroyed)
* @param nodeA 1st involved object (alias created)
* @param nodeB 2nd involved object (alias created)
* @param manifoldPointObjectId Bullet identifier of the btManifoldPoint
*/
public PhysicsCollisionEvent(int type, PhysicsCollisionObject nodeA, PhysicsCollisionObject nodeB, long manifoldPointObjectId) {
super(nodeA);
this.type = type;
this.nodeA = nodeA;
this.nodeB = nodeB;
this.manifoldPointObjectId = manifoldPointObjectId;
}
/**
* Destroy this event.
*/
public void clean() {
source = null;
this.type = 0;
this.nodeA = null;
this.nodeB = null;
this.manifoldPointObjectId = 0;
}
/**
* Reuse this event.
*
* @param type event type (added/processed/destroyed)
* @param source 1st involved object (alias created)
* @param nodeB 2nd involved object (alias created)
* @param manifoldPointObjectId Bullet identifier
*/
public void refactor(int type, PhysicsCollisionObject source, PhysicsCollisionObject nodeB, long manifoldPointObjectId) {
this.source = source;
this.type = type;
this.nodeA = source;
this.nodeB = nodeB;
this.manifoldPointObjectId = manifoldPointObjectId;
}
/**
* Read the type of event.
*
* @return added/processed/destroyed
*/
public int getType() {
return type;
}
/**
* Access the user object of collision object A, provided it's a Spatial.
*
* @return the pre-existing Spatial, or null if none
*/
public Spatial getNodeA() {
if (nodeA.getUserObject() instanceof Spatial) {
return (Spatial) nodeA.getUserObject();
}
return null;
}
/**
* Access the user object of collision object B, provided it's a Spatial.
*
* @return the pre-existing Spatial, or null if none
*/
public Spatial getNodeB() {
if (nodeB.getUserObject() instanceof Spatial) {
return (Spatial) nodeB.getUserObject();
}
return null;
}
/**
* Access collision object A.
*
* @return the pre-existing object (not null)
*/
public PhysicsCollisionObject getObjectA() {
return nodeA;
}
/**
* Access collision object B.
*
* @return the pre-existing object (not null)
*/
public PhysicsCollisionObject getObjectB() {
return nodeB;
}
/**
* Read the collision's applied impulse.
*
* @return impulse
*/
public float getAppliedImpulse() {
return getAppliedImpulse(manifoldPointObjectId);
}
private native float getAppliedImpulse(long manifoldPointObjectId);
/**
* Read the collision's applied lateral impulse #1.
*
* @return impulse
*/
public float getAppliedImpulseLateral1() {
return getAppliedImpulseLateral1(manifoldPointObjectId);
}
private native float getAppliedImpulseLateral1(long manifoldPointObjectId);
/**
* Read the collision's applied lateral impulse #2.
*
* @return impulse
*/
public float getAppliedImpulseLateral2() {
return getAppliedImpulseLateral2(manifoldPointObjectId);
}
private native float getAppliedImpulseLateral2(long manifoldPointObjectId);
/**
* Read the collision's combined friction.
*
* @return friction
*/
public float getCombinedFriction() {
return getCombinedFriction(manifoldPointObjectId);
}
private native float getCombinedFriction(long manifoldPointObjectId);
/**
* Read the collision's combined restitution.
*
* @return restitution
*/
public float getCombinedRestitution() {
return getCombinedRestitution(manifoldPointObjectId);
}
private native float getCombinedRestitution(long manifoldPointObjectId);
/**
* Read the collision's distance #1.
*
* @return distance
*/
public float getDistance1() {
return getDistance1(manifoldPointObjectId);
}
private native float getDistance1(long manifoldPointObjectId);
/**
* Read the collision's index 0.
*
* @return index
*/
public int getIndex0() {
return getIndex0(manifoldPointObjectId);
}
private native int getIndex0(long manifoldPointObjectId);
/**
* Read the collision's index 1.
*
* @return index
*/
public int getIndex1() {
return getIndex1(manifoldPointObjectId);
}
private native int getIndex1(long manifoldPointObjectId);
/**
* Copy the collision's lateral friction direction #1.
*
* @return a new vector (not null)
*/
public Vector3f getLateralFrictionDir1() {
return getLateralFrictionDir1(new Vector3f());
}
/**
* Copy the collision's lateral friction direction #1.
*
* @param lateralFrictionDir1 storage for the result (not null, modified)
* @return direction vector (not null)
*/
public Vector3f getLateralFrictionDir1(Vector3f lateralFrictionDir1) {
getLateralFrictionDir1(manifoldPointObjectId, lateralFrictionDir1);
return lateralFrictionDir1;
}
private native void getLateralFrictionDir1(long manifoldPointObjectId, Vector3f lateralFrictionDir1);
/**
* Copy the collision's lateral friction direction #2.
*
* @return a new vector
*/
public Vector3f getLateralFrictionDir2() {
return getLateralFrictionDir2(new Vector3f());
}
/**
* Copy the collision's lateral friction direction #2.
*
* @param lateralFrictionDir2 storage for the result (not null, modified)
* @return direction vector (not null)
*/
public Vector3f getLateralFrictionDir2(Vector3f lateralFrictionDir2) {
getLateralFrictionDir2(manifoldPointObjectId, lateralFrictionDir2);
return lateralFrictionDir2;
}
private native void getLateralFrictionDir2(long manifoldPointObjectId, Vector3f lateralFrictionDir2);
/**
* Test whether the collision's lateral friction is initialized.
*
* @return true if initialized, otherwise false
*/
public boolean isLateralFrictionInitialized() {
return isLateralFrictionInitialized(manifoldPointObjectId);
}
private native boolean isLateralFrictionInitialized(long manifoldPointObjectId);
/**
* Read the collision's lifetime.
*
* @return lifetime
*/
public int getLifeTime() {
return getLifeTime(manifoldPointObjectId);
}
private native int getLifeTime(long manifoldPointObjectId);
/**
* Copy the collision's location in the local coordinates of object A.
*
* @return a new location vector (in local coordinates, not null)
*/
public Vector3f getLocalPointA() {
return getLocalPointA(new Vector3f());
}
/**
* Copy the collision's location in the local coordinates of object A.
*
* @param localPointA storage for the result (not null, modified)
* @return a location vector (in local coordinates, not null)
*/
public Vector3f getLocalPointA(Vector3f localPointA) {
getLocalPointA(manifoldPointObjectId, localPointA);
return localPointA;
}
private native void getLocalPointA(long manifoldPointObjectId, Vector3f localPointA);
/**
* Copy the collision's location in the local coordinates of object B.
*
* @return a new location vector (in local coordinates, not null)
*/
public Vector3f getLocalPointB() {
return getLocalPointB(new Vector3f());
}
/**
* Copy the collision's location in the local coordinates of object B.
*
* @param localPointB storage for the result (not null, modified)
* @return a location vector (in local coordinates, not null)
*/
public Vector3f getLocalPointB(Vector3f localPointB) {
getLocalPointB(manifoldPointObjectId, localPointB);
return localPointB;
}
private native void getLocalPointB(long manifoldPointObjectId, Vector3f localPointB);
/**
* Copy the collision's normal on object B.
*
* @return a new normal vector (in physics-space coordinates, not null)
*/
public Vector3f getNormalWorldOnB() {
return getNormalWorldOnB(new Vector3f());
}
/**
* Copy the collision's normal on object B.
*
* @param normalWorldOnB storage for the result (not null, modified)
* @return a normal vector (in physics-space coordinates, not null)
*/
public Vector3f getNormalWorldOnB(Vector3f normalWorldOnB) {
getNormalWorldOnB(manifoldPointObjectId, normalWorldOnB);
return normalWorldOnB;
}
private native void getNormalWorldOnB(long manifoldPointObjectId, Vector3f normalWorldOnB);
/**
* Read part identifier 0.
*
* @return identifier
*/
public int getPartId0() {
return getPartId0(manifoldPointObjectId);
}
private native int getPartId0(long manifoldPointObjectId);
/**
* Read part identifier 1.
*
* @return identifier
*/
public int getPartId1() {
return getPartId1(manifoldPointObjectId);
}
private native int getPartId1(long manifoldPointObjectId);
/**
* Copy the collision's location.
*
* @return a new vector (in physics-space coordinates, not null)
*/
public Vector3f getPositionWorldOnA() {
return getPositionWorldOnA(new Vector3f());
}
/**
* Copy the collision's location.
*
* @param positionWorldOnA storage for the result (not null, modified)
* @return a location vector (in physics-space coordinates, not null)
*/
public Vector3f getPositionWorldOnA(Vector3f positionWorldOnA) {
getPositionWorldOnA(manifoldPointObjectId, positionWorldOnA);
return positionWorldOnA;
}
private native void getPositionWorldOnA(long manifoldPointObjectId, Vector3f positionWorldOnA);
/**
* Copy the collision's location.
*
* @return a new location vector (in physics-space coordinates, not null)
*/
public Vector3f getPositionWorldOnB() {
return getPositionWorldOnB(new Vector3f());
}
/**
* Copy the collision's location.
*
* @param positionWorldOnB storage for the result (not null, modified)
* @return a location vector (in physics-space coordinates, not null)
*/
public Vector3f getPositionWorldOnB(Vector3f positionWorldOnB) {
getPositionWorldOnB(manifoldPointObjectId, positionWorldOnB);
return positionWorldOnB;
}
private native void getPositionWorldOnB(long manifoldPointObjectId, Vector3f positionWorldOnB);
// public Object getUserPersistentData() {
// return userPersistentData;
// }
}