A complete 3D game development suite written purely in Java.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
jmonkeyengine/jme3-bullet/src/main/java/com/jme3/bullet/joints/SixDofSpringJoint.java

93 lines
4.2 KiB

/*
* Copyright (c) 2009-2012 jMonkeyEngine
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of 'jMonkeyEngine' nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package com.jme3.bullet.joints;
import com.jme3.bullet.objects.PhysicsRigidBody;
import com.jme3.math.Matrix3f;
import com.jme3.math.Vector3f;
/**
* <i>From bullet manual:</i><br>
* This generic constraint can emulate a variety of standard constraints,
* by configuring each of the 6 degrees of freedom (dof).
* The first 3 dof axis are linear axis, which represent translation of rigidbodies,
* and the latter 3 dof axis represent the angular motion. Each axis can be either locked,
* free or limited. On construction of a new btGeneric6DofConstraint, all axis are locked.
* Afterwards the axis can be reconfigured. Note that several combinations that
* include free and/or limited angular degrees of freedom are undefined.
* @author normenhansen
*/
public class SixDofSpringJoint extends SixDofJoint {
final boolean springEnabled[] = new boolean[6];
final float equilibriumPoint[] = new float[6];
final float springStiffness[] = new float[6];
final float springDamping[] = new float[6]; // between 0 and 1 (1 == no damping)
public SixDofSpringJoint() {
}
/**
* @param pivotA local translation of the joint connection point in node A
* @param pivotB local translation of the joint connection point in node B
*/
public SixDofSpringJoint(PhysicsRigidBody nodeA, PhysicsRigidBody nodeB, Vector3f pivotA, Vector3f pivotB, Matrix3f rotA, Matrix3f rotB, boolean useLinearReferenceFrameA) {
super(nodeA, nodeB, pivotA, pivotB, rotA, rotB, useLinearReferenceFrameA);
}
public void enableSpring(int index, boolean onOff) {
enableSpring(objectId, index, onOff);
}
native void enableSpring(long objctId, int index, boolean onOff);
public void setStiffness(int index, float stiffness) {
setStiffness(objectId, index, stiffness);
}
native void setStiffness(long objctId, int index, float stiffness);
public void setDamping(int index, float damping) {
setDamping(objectId, index, damping);
}
native void setDamping(long objctId, int index, float damping);
public void setEquilibriumPoint() { // set the current constraint position/orientation as an equilibrium point for all DOF
setEquilibriumPoint(objectId);
}
native void setEquilibriumPoint(long objctId);
public void setEquilibriumPoint(int index){ // set the current constraint position/orientation as an equilibrium point for given DOF
setEquilibriumPoint(objectId, index);
}
native void setEquilibriumPoint(long objctId, int index);
@Override
native long createJoint(long objectIdA, long objectIdB, Vector3f pivotA, Matrix3f rotA, Vector3f pivotB, Matrix3f rotB, boolean useLinearReferenceFrameA);
}