|
|
|
@ -321,21 +321,21 @@ snake.onTick = function(obj) { // When the game updates |
|
|
|
|
} |
|
|
|
|
if (Math.abs(diff_x) > Math.abs(diff_y)) { |
|
|
|
|
if (diff_x > 0) { |
|
|
|
|
if (dir !== RIGHT && findSafePath(LEFT, x - 1, y, targetX, targetY)) { |
|
|
|
|
if (dir !== RIGHT && findSafePath(LEFT, x - 1, y, targetX, targetY,appleDepth)) { |
|
|
|
|
return true; |
|
|
|
|
} //Preferred direction found.
|
|
|
|
|
} else { |
|
|
|
|
if (dir !== LEFT && findSafePath(RIGHT, x + 1, y, targetX, targetY)) { |
|
|
|
|
if (dir !== LEFT && findSafePath(RIGHT, x + 1, y, targetX, targetY,appleDepth)) { |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} else { |
|
|
|
|
if (diff_y > 0) { |
|
|
|
|
if (dir !== DOWN && findSafePath(UP, x, y - 1, targetX, targetY)) { |
|
|
|
|
if (dir !== DOWN && findSafePath(UP, x, y - 1, targetX, targetY,appleDepth)) { |
|
|
|
|
return true; |
|
|
|
|
} //Preferred direction found.
|
|
|
|
|
} else { |
|
|
|
|
if (dir !== UP && findSafePath(DOWN, x, y + 1, targetX, targetY)) { |
|
|
|
|
if (dir !== UP && findSafePath(DOWN, x, y + 1, targetX, targetY,appleDepth)) { |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
@ -429,6 +429,11 @@ snake.onTick = function(obj) { // When the game updates |
|
|
|
|
console.log("No viable path, just survive for now...") |
|
|
|
|
TEST_REGIONS = [] |
|
|
|
|
EXTRA_MOVEMENT=false |
|
|
|
|
APPLES_LIST= |
|
|
|
|
snake.apples() |
|
|
|
|
.filter((a)=>a[0]!==bestApp.x&&a[1]!==bestApp.y) //I want apples furthest away to be checked first. These are probably the safest calculations to make.
|
|
|
|
|
.sort((a,b)=>Math.sqrt(Math.pow(snake.x-b[0],2)+Math.pow(snake.y-b[1],2))-Math.sqrt(Math.pow(snake.x-a[0],2)+Math.pow(snake.y-a[1],2))) |
|
|
|
|
|
|
|
|
|
if (snake.x !== 0 && snake.y !== 0) { |
|
|
|
|
if (snake.me()?.direction !== DOWN && findSafePath(UP, snake.x, snake.y - 1, 0, 0)) { |
|
|
|
|
setDirection(UP); |
|
|
|
@ -450,6 +455,11 @@ snake.onTick = function(obj) { // When the game updates |
|
|
|
|
TEST_REGIONS = [] |
|
|
|
|
EXTRA_MOVEMENT=false |
|
|
|
|
console.log("Last resort...") |
|
|
|
|
APPLES_LIST= |
|
|
|
|
snake.apples() |
|
|
|
|
.filter((a)=>a[0]!==bestApp.x&&a[1]!==bestApp.y) //I want apples furthest away to be checked first. These are probably the safest calculations to make.
|
|
|
|
|
.sort((a,b)=>Math.sqrt(Math.pow(snake.x-b[0],2)+Math.pow(snake.y-b[1],2))-Math.sqrt(Math.pow(snake.x-a[0],2)+Math.pow(snake.y-a[1],2))) |
|
|
|
|
|
|
|
|
|
if (snake.me()?.direction !== DOWN && findSafePath(UP, snake.x, snake.y - 1, 149, 149)) { |
|
|
|
|
setDirection(UP); |
|
|
|
|
return; |
|
|
|
@ -466,7 +476,7 @@ snake.onTick = function(obj) { // When the game updates |
|
|
|
|
setDirection(DOWN); |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
console.log("Good luck....") |
|
|
|
|
TEST_REGIONS = [] |
|
|
|
|
EXTRA_MOVEMENT=false |
|
|
|
|
if (spotIsFree(snake.me().direction, x + (snake.me().direction === RIGHT ? 1 : snake.me().direction === LEFT ? -1 : 0), y + (snake.me().direction === DOWN ? 1 : snake.me().direction === UP ? -1 : 0))) { |
|
|
|
|