#define OLC_PGE_APPLICATION #include "pixelGameEngine.h" #include #include using namespace olc; struct vec2d { float u,v; }; struct vec3d { float x=0; float y=0; float z=0; float w=1; }; struct triangle { vec3d p[3]; vec2d uv[3]; Pixel col; }; struct mesh { std::vector tris; bool LoadFromObjectFile(std::string sFilename) { std::ifstream f(sFilename); if (!f.is_open()) return false; // Local cache of verts std::vector verts; std::vector uvs; while (!f.eof()) { char line[128]; f.getline(line, 128); std::strstream s; s << line; char junk; if (line[0] == 'v') { if (line[1]=='t') { vec2d v; s >> junk >> junk >> v.u >> v.v; uvs.push_back(v); //std::cout<<"Line: "<> junk >> v.x >> v.y >> v.z; verts.push_back(v); //std::cout<<"Line: "<> junk; std::string tokens[9]; int nTokenCount = -1; while (!s.eof()) { char c = s.get(); if (c == ' ' || c == '/') nTokenCount++; else tokens[nTokenCount].append(1, c); } tokens[nTokenCount].pop_back(); tris.push_back({ verts[stoi(tokens[0]) - 1], verts[stoi(tokens[3]) - 1], verts[stoi(tokens[6]) - 1], 0,0,0 /*uvs[stoi(tokens[1]) - 1], uvs[stoi(tokens[4]) - 1], uvs[stoi(tokens[7]) - 1]*/}); } } return true; } }; struct mat4x4 { float m[4][4] = { 0 }; }; class olcEngine3D : public PixelGameEngine { public: Decal*texture; olcEngine3D() { sAppName = "3D Demo"; } private: mesh meshCube; mat4x4 matProj; vec3d vCamera={0,0,0}; vec3d vLookDir; float zOffset=2; float fTheta=0; float fYaw=0; vec3d Matrix_MultiplyVector(mat4x4 &m, vec3d &i) { vec3d v; v.x = i.x * m.m[0][0] + i.y * m.m[1][0] + i.z * m.m[2][0] + i.w * m.m[3][0]; v.y = i.x * m.m[0][1] + i.y * m.m[1][1] + i.z * m.m[2][1] + i.w * m.m[3][1]; v.z = i.x * m.m[0][2] + i.y * m.m[1][2] + i.z * m.m[2][2] + i.w * m.m[3][2]; v.w = i.x * m.m[0][3] + i.y * m.m[1][3] + i.z * m.m[2][3] + i.w * m.m[3][3]; return v; } mat4x4 Matrix_MakeIdentity() { mat4x4 matrix; matrix.m[0][0] = 1.0f; matrix.m[1][1] = 1.0f; matrix.m[2][2] = 1.0f; matrix.m[3][3] = 1.0f; return matrix; } mat4x4 Matrix_MakeRotationX(float fAngleRad) { mat4x4 matrix; matrix.m[0][0] = 1.0f; matrix.m[1][1] = cosf(fAngleRad); matrix.m[1][2] = sinf(fAngleRad); matrix.m[2][1] = -sinf(fAngleRad); matrix.m[2][2] = cosf(fAngleRad); matrix.m[3][3] = 1.0f; return matrix; } mat4x4 Matrix_MakeRotationY(float fAngleRad) { mat4x4 matrix; matrix.m[0][0] = cosf(fAngleRad); matrix.m[0][2] = sinf(fAngleRad); matrix.m[2][0] = -sinf(fAngleRad); matrix.m[1][1] = 1.0f; matrix.m[2][2] = cosf(fAngleRad); matrix.m[3][3] = 1.0f; return matrix; } mat4x4 Matrix_MakeRotationZ(float fAngleRad) { mat4x4 matrix; matrix.m[0][0] = cosf(fAngleRad); matrix.m[0][1] = sinf(fAngleRad); matrix.m[1][0] = -sinf(fAngleRad); matrix.m[1][1] = cosf(fAngleRad); matrix.m[2][2] = 1.0f; matrix.m[3][3] = 1.0f; return matrix; } mat4x4 Matrix_MakeTranslation(float x, float y, float z) { mat4x4 matrix; matrix.m[0][0] = 1.0f; matrix.m[1][1] = 1.0f; matrix.m[2][2] = 1.0f; matrix.m[3][3] = 1.0f; matrix.m[3][0] = x; matrix.m[3][1] = y; matrix.m[3][2] = z; return matrix; } mat4x4 Matrix_MakeProjection(float fFovDegrees, float fAspectRatio, float fNear, float fFar) { float fFovRad = 1.0f / tanf(fFovDegrees * 0.5f / 180.0f * 3.14159f); mat4x4 matrix; matrix.m[0][0] = fAspectRatio * fFovRad; matrix.m[1][1] = fFovRad; matrix.m[2][2] = fFar / (fFar - fNear); matrix.m[3][2] = (-fFar * fNear) / (fFar - fNear); matrix.m[2][3] = 1.0f; matrix.m[3][3] = 0.0f; return matrix; } mat4x4 Matrix_MultiplyMatrix(mat4x4 &m1, mat4x4 &m2) { mat4x4 matrix; for (int c = 0; c < 4; c++) for (int r = 0; r < 4; r++) matrix.m[r][c] = m1.m[r][0] * m2.m[0][c] + m1.m[r][1] * m2.m[1][c] + m1.m[r][2] * m2.m[2][c] + m1.m[r][3] * m2.m[3][c]; return matrix; } mat4x4 Matrix_PointAt(vec3d &pos, vec3d &target, vec3d &up) { // Calculate new forward direction vec3d newForward = Vector_Sub(target, pos); newForward = Vector_Normalise(newForward); // Calculate new Up direction vec3d a = Vector_Mul(newForward, Vector_DotProduct(up, newForward)); vec3d newUp = Vector_Sub(up, a); newUp = Vector_Normalise(newUp); // New Right direction is easy, its just cross product vec3d newRight = Vector_CrossProduct(newUp, newForward); // Construct Dimensioning and Translation Matrix mat4x4 matrix; matrix.m[0][0] = newRight.x; matrix.m[0][1] = newRight.y; matrix.m[0][2] = newRight.z; matrix.m[0][3] = 0.0f; matrix.m[1][0] = newUp.x; matrix.m[1][1] = newUp.y; matrix.m[1][2] = newUp.z; matrix.m[1][3] = 0.0f; matrix.m[2][0] = newForward.x; matrix.m[2][1] = newForward.y; matrix.m[2][2] = newForward.z; matrix.m[2][3] = 0.0f; matrix.m[3][0] = pos.x; matrix.m[3][1] = pos.y; matrix.m[3][2] = pos.z; matrix.m[3][3] = 1.0f; return matrix; } mat4x4 Matrix_QuickInverse(mat4x4 &m) // Only for Rotation/Translation Matrices { mat4x4 matrix; matrix.m[0][0] = m.m[0][0]; matrix.m[0][1] = m.m[1][0]; matrix.m[0][2] = m.m[2][0]; matrix.m[0][3] = 0.0f; matrix.m[1][0] = m.m[0][1]; matrix.m[1][1] = m.m[1][1]; matrix.m[1][2] = m.m[2][1]; matrix.m[1][3] = 0.0f; matrix.m[2][0] = m.m[0][2]; matrix.m[2][1] = m.m[1][2]; matrix.m[2][2] = m.m[2][2]; matrix.m[2][3] = 0.0f; matrix.m[3][0] = -(m.m[3][0] * matrix.m[0][0] + m.m[3][1] * matrix.m[1][0] + m.m[3][2] * matrix.m[2][0]); matrix.m[3][1] = -(m.m[3][0] * matrix.m[0][1] + m.m[3][1] * matrix.m[1][1] + m.m[3][2] * matrix.m[2][1]); matrix.m[3][2] = -(m.m[3][0] * matrix.m[0][2] + m.m[3][1] * matrix.m[1][2] + m.m[3][2] * matrix.m[2][2]); matrix.m[3][3] = 1.0f; return matrix; } vec3d Vector_Add(vec3d &v1, vec3d &v2) { return { v1.x + v2.x, v1.y + v2.y, v1.z + v2.z }; } vec3d Vector_Sub(vec3d &v1, vec3d &v2) { return { v1.x - v2.x, v1.y - v2.y, v1.z - v2.z }; } vec3d Vector_Mul(vec3d &v1, float k) { return { v1.x * k, v1.y * k, v1.z * k }; } vec3d Vector_Div(vec3d &v1, float k) { return { v1.x / k, v1.y / k, v1.z / k }; } float Vector_DotProduct(vec3d &v1, vec3d &v2) { return v1.x*v2.x + v1.y*v2.y + v1.z * v2.z; } float Vector_Length(vec3d &v) { return sqrtf(Vector_DotProduct(v, v)); } vec3d Vector_Normalise(vec3d &v) { float l = Vector_Length(v); return { v.x / l, v.y / l, v.z / l }; } vec3d Vector_CrossProduct(vec3d &v1, vec3d &v2) { vec3d v; v.x = v1.y * v2.z - v1.z * v2.y; v.y = v1.z * v2.x - v1.x * v2.z; v.z = v1.x * v2.y - v1.y * v2.x; return v; } public: bool OnUserCreate() override { texture = new Decal(new Sprite("Body.png")); meshCube.LoadFromObjectFile("Nia.obj"); matProj=Matrix_MakeProjection(90.0f,(float)ScreenHeight() / (float)ScreenWidth(),0.1f,1000.0f); return true; } bool OnUserUpdate(float fElapsedTime) override { if (GetKey(olc::DOWN).bHeld) { vCamera.y-=8*fElapsedTime; } if (GetKey(olc::UP).bHeld) { vCamera.y+=8*fElapsedTime; } if (GetKey(olc::RIGHT).bHeld) { vCamera.x+=8*fElapsedTime; } if (GetKey(olc::LEFT).bHeld) { vCamera.x-=8*fElapsedTime; } vec3d vForward=Vector_Mul(vLookDir,8*fElapsedTime); if (GetKey(olc::W).bHeld) { vCamera=Vector_Add(vCamera,vForward); } if (GetKey(olc::S).bHeld) { vCamera=Vector_Sub(vCamera,vForward); } if (GetKey(olc::A).bHeld) { fYaw-=2*fElapsedTime; } if (GetKey(olc::D).bHeld) { fYaw+=2*fElapsedTime; } // Set up rotation matrices mat4x4 matRotZ, matRotX, matTrans, matWorld; matRotZ=Matrix_MakeRotationZ(fTheta*0.5f); matRotX=Matrix_MakeRotationX(fTheta); matTrans=Matrix_MakeTranslation(0.0f,0.0f,5.0f); matWorld=Matrix_MakeIdentity(); matWorld=Matrix_MultiplyMatrix(matRotZ,matRotX); matWorld=Matrix_MultiplyMatrix(matWorld,matTrans); vec3d vUp={0,1,0}; vec3d vTarget={0,0,1}; mat4x4 matCameraRot=Matrix_MakeRotationY(fYaw); vLookDir=Matrix_MultiplyVector(matCameraRot,vTarget); vTarget=Vector_Add(vCamera,vLookDir); mat4x4 matCamera = Matrix_PointAt(vCamera,vTarget,vUp); mat4x4 matView=Matrix_QuickInverse(matCamera); std::vectorvecTrianglesToRaster; // Draw Triangles for (auto&tri : meshCube.tris) { triangle triProjected, triTransformed,triViewed; triTransformed.p[0]=Matrix_MultiplyVector(matWorld,tri.p[0]); triTransformed.p[1]=Matrix_MultiplyVector(matWorld,tri.p[1]); triTransformed.p[2]=Matrix_MultiplyVector(matWorld,tri.p[2]); vec3d normal,line1,line2; line1=Vector_Sub(triTransformed.p[1],triTransformed.p[0]); line2=Vector_Sub(triTransformed.p[2],triTransformed.p[0]); normal=Vector_CrossProduct(line1,line2); normal=Vector_Normalise(normal); vec3d vCameraRay=Vector_Sub(triTransformed.p[0],vCamera); if (Vector_DotProduct(normal,vCameraRay)<0) { vec3d light_dir=Vector_Mul(vCameraRay,-1); light_dir=Vector_Normalise(light_dir); float dp = std::max(0.1f,Vector_DotProduct(light_dir,normal)); triTransformed.col=Pixel(255*dp*dp,255*dp*dp,255*dp*dp); triViewed.p[0]=Matrix_MultiplyVector(matView,triTransformed.p[0]); triViewed.p[1]=Matrix_MultiplyVector(matView,triTransformed.p[1]); triViewed.p[2]=Matrix_MultiplyVector(matView,triTransformed.p[2]); // Project triangles from 3D --> 2D triProjected.p[0]=Matrix_MultiplyVector(matProj,triViewed.p[0]); triProjected.p[1]=Matrix_MultiplyVector(matProj,triViewed.p[1]); triProjected.p[2]=Matrix_MultiplyVector(matProj,triViewed.p[2]); triProjected.p[0]=Vector_Div(triProjected.p[0],triProjected.p[0].w); triProjected.p[1]=Vector_Div(triProjected.p[1],triProjected.p[1].w); triProjected.p[2]=Vector_Div(triProjected.p[2],triProjected.p[2].w); triProjected.col=triTransformed.col; triProjected.p[0].x*=-1.0f; triProjected.p[1].x*=-1.0f; triProjected.p[2].x*=-1.0f; triProjected.p[0].y*=-1.0f; triProjected.p[1].y*=-1.0f; triProjected.p[2].y*=-1.0f; // Scale into view vec3d vOffsetView={1,1,0}; triProjected.p[0] = Vector_Add(triProjected.p[0],vOffsetView); triProjected.p[1] = Vector_Add(triProjected.p[1],vOffsetView); triProjected.p[2] = Vector_Add(triProjected.p[2],vOffsetView); triProjected.p[0].x *= 0.5f * (float)ScreenWidth(); triProjected.p[0].y *= 0.5f * (float)ScreenHeight(); triProjected.p[1].x *= 0.5f * (float)ScreenWidth(); triProjected.p[1].y *= 0.5f * (float)ScreenHeight(); triProjected.p[2].x *= 0.5f * (float)ScreenWidth(); triProjected.p[2].y *= 0.5f * (float)ScreenHeight(); vecTrianglesToRaster.push_back(triProjected); } } std::sort(vecTrianglesToRaster.begin(),vecTrianglesToRaster.end(),[](triangle&t1,triangle&t2){return (t1.p[0].z+t1.p[1].z+t1.p[2].z)/3.0f>(t2.p[0].z+t2.p[1].z+t2.p[2].z)/3.0f;}); for (auto&triProjected:vecTrianglesToRaster) { // Rasterize triangle SetDecalStructure(DecalStructure::LIST); SetDecalMode(DecalMode::NORMAL); DrawPolygonDecal(nullptr,{ {triProjected.p[0].x, triProjected.p[0].y}, {triProjected.p[1].x, triProjected.p[1].y}, {triProjected.p[2].x, triProjected.p[2].y} },{ {triProjected.uv[0].u,triProjected.uv[0].v}, {triProjected.uv[1].u,triProjected.uv[1].v}, {triProjected.uv[2].u,triProjected.uv[2].v}, },triProjected.col); /*SetDecalMode(DecalMode::WIREFRAME); DrawPolygonDecal(nullptr,{ {triProjected.p[0].x, triProjected.p[0].y}, {triProjected.p[1].x, triProjected.p[1].y}, {triProjected.p[2].x, triProjected.p[2].y} },{ {0,0}, {0,0}, {0,0}, },BLACK);*/ SetDecalStructure(DecalStructure::FAN); } SetDecalMode(DecalMode::NORMAL); DrawStringDecal({0,0},"Triangles: "+std::to_string(meshCube.tris.size())); return true; } }; int main() { olcEngine3D demo; if (demo.Construct(1280, 720, 1, 1)) demo.Start(); return 0; }