You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
SMX_PGE/sdk/Windows/SMXPanelAnimationUpload.cpp

485 lines
18 KiB

#include "SMXPanelAnimationUpload.h"
#include "SMXPanelAnimation.h"
#include "SMXGif.h"
#include "SMXManager.h"
#include "SMXDevice.h"
#include "Helpers.h"
#include <string>
#include <vector>
using namespace std;
using namespace SMX;
// This handles setting up commands to upload panel animations to the
// controller.
//
// This is only meant to be used by configuration tools to allow setting
// up animations that work while the pad isn't being controlled by the
// SDK. If you want to control lights for your game, this isn't what
// you want. Use SMX_SetLights instead.
//
// Panel animations are sent to the master controller one panel at a time, and
// each animation can take several commands to upload to fit in the protocol packet
// size. These commands are stateful.
namespace
{
// Panel names for error messages.
static const char *panel_names[] = {
"up-left", "up", "up-right",
"left", "center", "right",
"down-left", "down", "down-right",
};
}
// These structs are the protocol we use to send offline graphics to the pad.
// This isn't related to realtime lighting.
namespace PanelLightGraphic
{
// One 24-bit RGB color:
struct color_t {
uint8_t rgb[3];
};
// 4-bit palette, 15 colors. Our graphics are 4-bit. Color 0xF is transparent,
// so we don't have a palette entry for it.
struct palette_t {
color_t colors[15];
};
// A single 4-bit paletted graphic.
struct graphic_t {
uint8_t data[13];
};
struct panel_animation_data_t
{
// Our graphics and palettes. We can apply either palette to any graphic. Note that
// each graphic is 13 bytes and each palette is 45 bytes.
graphic_t graphics[64];
palette_t palettes[2];
};
struct animation_timing_t
{
// An index into frames[]:
uint8_t loop_animation_frame;
// A list of graphic frames to display, and how long to display them in
// 30 FPS frames. A frame index of 0xFF (or reaching the end) loops.
uint8_t frames[64];
uint8_t delay[64];
};
// Commands to upload data:
#pragma pack(push, 1)
struct upload_packet
{
// 'm' to upload master animation data.
uint8_t cmd = 'm';
// The panel this data is for. If this is 0xFF, it's for the master.
uint8_t panel = 0;
// For master uploads, the animation number to modify. Panels ignore this field.
uint8_t animation_idx = 0;
// True if this is the last upload packet. This lets the firmware know that
// this part of the upload is finished and it can update anything that might
// be affected by it, like resetting lights animations.
bool final_packet = false;
uint16_t offset = 0;
uint8_t size = 0;
uint8_t data[240];
};
#pragma pack(pop)
#pragma pack(push, 1)
struct delay_packet
{
// 'd' to ask the master to delay.
uint8_t cmd = 'd';
// How long to delay:
uint16_t milliseconds = 0;
};
#pragma pack(pop)
// Make sure the packet fits in a command packet.
static_assert(sizeof(upload_packet) <= 0xFF, "");
}
// The GIFs can use variable framerates. The panels update at 30 FPS.
#define FPS 30
// Helpers for converting PanelGraphics to the packed sprite representation
// we give to the pad.
namespace ProtocolHelpers
{
// Return a color's index in palette. If the color isn't found, return 0xFF.
// We can use a dumb linear search here since the graphics are so small.
uint8_t GetColorIndex(const PanelLightGraphic::palette_t &palette, const SMXGif::Color &color)
{
// Transparency is always palette index 15.
if(color.color[3] == 0)
return 15;
for(int idx = 0; idx < 15; ++idx)
{
PanelLightGraphic::color_t pad_color = palette.colors[idx];
if(pad_color.rgb[0] == color.color[0] &&
pad_color.rgb[1] == color.color[1] &&
pad_color.rgb[2] == color.color[2])
return idx;
}
return 0xFF;
}
// Create a palette for an animation.
//
// We're loading from paletted GIFs, but we create a separate small palette
// for each panel's animation, so we don't use the GIF's palette.
bool CreatePalette(const SMXPanelAnimation &animation, PanelLightGraphic::palette_t &palette)
{
int next_color = 0;
for(const auto &panel_graphic: animation.m_aPanelGraphics)
{
for(const SMXGif::Color &color: panel_graphic)
{
// If this color is transparent, leave it out of the palette.
if(color.color[3] == 0)
continue;
// Check if this color is already in the palette.
uint8_t existing_idx = GetColorIndex(palette, color);
if(existing_idx != 0xFF)
continue;
// Return false if we're using too many colors.
if(next_color == 15)
return false;
// Add this color.
PanelLightGraphic::color_t pad_color;
pad_color.rgb[0] = color.color[0];
pad_color.rgb[1] = color.color[1];
pad_color.rgb[2] = color.color[2];
palette.colors[next_color] = pad_color;
next_color++;
}
}
return true;
}
// Return packed paletted graphics for each frame, using a palette created
// with CreatePalette. The palette must have fewer than 16 colors.
void CreatePackedGraphic(const vector<SMXGif::Color> &image, const PanelLightGraphic::palette_t &palette,
PanelLightGraphic::graphic_t &out)
{
int position = 0;
memset(out.data, 0, sizeof(out.data));
for(auto color: image)
{
// Transparency is always palette index 15.
uint8_t palette_idx = GetColorIndex(palette, color);
if(palette_idx == 0xFF)
palette_idx = 0;
// If this is an odd index, put the palette index in the low 4
// bits. Otherwise, put it in the high 4 bits.
if(position & 1)
out.data[position/2] |= (palette_idx & 0x0F) << 0;
else
out.data[position/2] |= (palette_idx & 0x0F) << 4;
position++;
}
}
vector<uint8_t> get_frame_delays(const SMXPanelAnimation &animation)
{
vector<uint8_t> result;
int current_frame = 0;
float time_left_in_frame = animation.m_iFrameDurations[0];
result.push_back(0);
while(1)
{
// Advance time by 1/FPS seconds.
time_left_in_frame -= 1.0f / FPS;
result.back()++;
if(time_left_in_frame <= 0.00001f)
{
// We've displayed this frame long enough, so advance to the next frame.
if(current_frame + 1 == animation.m_iFrameDurations.size())
break;
current_frame += 1;
result.push_back(0);
time_left_in_frame += animation.m_iFrameDurations[current_frame];
// If time_left_in_frame is still negative, the animation is too fast.
if(time_left_in_frame < 0.00001)
time_left_in_frame = 0;
}
}
return result;
}
// Create the master data. This just has timing information.
bool CreateMasterAnimationData(SMX_LightsType type,
const SMXPanelAnimation &animation,
PanelLightGraphic::animation_timing_t &animation_timing, const char **error)
{
// Released (idle) animations use frames 0-31, and pressed animations use 32-63.
int first_graphic = type == SMX_LightsType_Released? 0:32;
// Check that we don't have more frames than we can fit in animation_timing.
// This is currently the same as the "too many frames" error below, but if
// we support longer delays (staying on the same graphic for multiple animation_timings)
// or deduping they'd be different.
if(animation.m_aPanelGraphics.size() > arraylen(animation_timing.frames))
{
*error = "The animation is too long.";
return false;
}
memset(&animation_timing.frames[0], 0xFF, sizeof(animation_timing.frames));
for(int i = 0; i < animation.m_aPanelGraphics.size(); ++i)
animation_timing.frames[i] = i + first_graphic;
// Set frame delays.
memset(&animation_timing.delay[0], 0, sizeof(animation_timing.delay));
vector<uint8_t> delays = get_frame_delays(animation);
for(int i = 0; i < delays.size() && i < 64; ++i)
animation_timing.delay[i] = delays[i];
// These frame numbers are relative to the animation, so don't add first_graphic.
animation_timing.loop_animation_frame = animation.m_iLoopFrame;
return true;
}
// Pack panel graphics.
bool CreatePanelAnimationData(PanelLightGraphic::panel_animation_data_t &panel_data,
int pad, SMX_LightsType type, int panel, const SMXPanelAnimation &animation, const char **error)
{
// We have a single buffer of animation frames for each panel, which we pack
// both the pressed and released frames into. This is the index of the next
// frame.
int next_graphic_idx = type == SMX_LightsType_Released? 0:32;
// Create this animation's 4-bit palette.
if(!ProtocolHelpers::CreatePalette(animation, panel_data.palettes[type]))
{
*error = SMX::CreateError(SMX::ssprintf("The %s panel uses too many colors.", panel_names[panel]));
return false;
}
// Create a small 4-bit paletted graphic with the 4-bit palette we created.
// These are the graphics we'll send to the controller.
for(const auto &panel_graphic: animation.m_aPanelGraphics)
{
if(next_graphic_idx > arraylen(panel_data.graphics))
{
*error = "The animation has too many frames.";
return false;
}
ProtocolHelpers::CreatePackedGraphic(panel_graphic, panel_data.palettes[type], panel_data.graphics[next_graphic_idx]);
next_graphic_idx++;
}
// Apply color scaling to the palette, in the same way SMXManager::SetLights does.
// Do this after we've finished creating the graphic, so this is only applied to
// the final result and doesn't affect palettization.
for(PanelLightGraphic::color_t &color: panel_data.palettes[type].colors)
{
for(int i = 0; i < 3; ++i)
color.rgb[i] = uint8_t(color.rgb[i] * 0.6666f);
}
return true;
}
// Create upload packets to upload a block of data.
void CreateUploadPackets(vector<PanelLightGraphic::upload_packet> &packets,
const void *data_block, int start, int size,
uint8_t panel, int animation_idx)
{
const uint8_t *buf = (const uint8_t *) data_block;
for(int offset = 0; offset < size; )
{
PanelLightGraphic::upload_packet packet;
packet.panel = panel;
packet.animation_idx = animation_idx;
packet.offset = start + offset;
int bytes_left = size - offset;
packet.size = min(sizeof(PanelLightGraphic::upload_packet::data), bytes_left);
memcpy(packet.data, buf, packet.size);
packets.push_back(packet);
offset += packet.size;
buf += packet.size;
}
}
}
namespace LightsUploadData
{
vector<string> commands[2];
}
// Prepare the loaded graphics for upload.
bool SMX_LightsUpload_PrepareUpload(int pad, SMX_LightsType type, const SMXPanelAnimation animations[9], const char **error)
{
// Create master animation data.
PanelLightGraphic::animation_timing_t master_animation_data;
memset(&master_animation_data, 0xFF, sizeof(master_animation_data));
// All animations of each type have the same timing for all panels, since
// they come from the same GIF, so just use the first frame to generate the
// master data.
if(!ProtocolHelpers::CreateMasterAnimationData(type, animations[0], master_animation_data, error))
return false;
// Create panel animation data.
PanelLightGraphic::panel_animation_data_t all_panel_data[9];
memset(&all_panel_data, 0xFF, sizeof(all_panel_data));
for(int panel = 0; panel < 9; ++panel)
{
if(!ProtocolHelpers::CreatePanelAnimationData(all_panel_data[panel], pad, type, panel, animations[panel], error))
return false;
}
// We successfully created the data, so there's nothing else that can fail from
// here on.
//
// A list of the final commands we'll send:
vector<string> &pad_commands = LightsUploadData::commands[pad];
pad_commands.clear();
// Add an upload packet to pad_commands:
auto add_packet_command = [&pad_commands](const PanelLightGraphic::upload_packet &packet) {
string command((char *) &packet, sizeof(packet));
pad_commands.push_back(command);
};
// Add a command to briefly delay the master, to give panels a chance to finish writing to EEPROM.
auto add_delay = [&pad_commands](int milliseconds) {
PanelLightGraphic::delay_packet packet;
packet.milliseconds = milliseconds;
string command((char *) &packet, sizeof(packet));
pad_commands.push_back(command);
};
// Create the packets we'll send, grouped by panel.
vector<PanelLightGraphic::upload_packet> packetsPerPanel[9];
for(int panel = 0; panel < 9; ++panel)
{
// Only upload the panel graphic data and the palette we're changing. If type
// is 0 (SMX_LightsType_Released), we're uploading the first 32 graphics and palette
// 0. If it's 1 (SMX_LightsType_Pressed), we're uploading the second 32 graphics
// and palette 1.
const auto &panel_data_block = all_panel_data[panel];
{
int first_graphic = type == SMX_LightsType_Released? 0:32;
const PanelLightGraphic::graphic_t *graphics = &panel_data_block.graphics[first_graphic];
int offset = offsetof(PanelLightGraphic::panel_animation_data_t, graphics[first_graphic]);
ProtocolHelpers::CreateUploadPackets(packetsPerPanel[panel], graphics, offset, sizeof(PanelLightGraphic::graphic_t) * 32, panel, type);
}
{
const PanelLightGraphic::palette_t *palette = &panel_data_block.palettes[type];
int offset = offsetof(PanelLightGraphic::panel_animation_data_t, palettes[type]);
ProtocolHelpers::CreateUploadPackets(packetsPerPanel[panel], palette, offset, sizeof(PanelLightGraphic::palette_t), panel, type);
}
}
// It takes 3.4ms per byte to write to EEPROM, and we need to avoid writing data
// to any single panel faster than that or data won't be written. However, we're
// writing each data separately to each panel, so we can write data to panel 1, then
// immediately write to panel 2 while panel 1 is busy doing the write. Taking advantage
// of this makes the upload go much faster. Panels will miss commands while they're
// writing data, but we don't care if panel 1 misses a command that's writing to panel
// 2 that it would ignore anyway.
//
// We write the first set of packets for each panel, then explicitly delay long enough
// for them to finish before writing the next set of packets.
while(1)
{
bool added_any_packets = false;
int max_size = 0;
for(int panel = 0; panel < 9; ++panel)
{
// Pull this panel's next packet. It doesn't actually matter what order we
// send the packets in.
// Add the next packet for each panel.
vector<PanelLightGraphic::upload_packet> &packets = packetsPerPanel[panel];
if(packets.empty())
continue;
PanelLightGraphic::upload_packet packet = packets.back();
packets.pop_back();
add_packet_command(packet);
max_size = max(max_size, packet.size);
added_any_packets = true;
}
// Delay long enough for the biggest write in this burst to finish. We do this
// by sending a command to the master to tell it to delay synchronously by the
// right amount.
int millisecondsToDelay = lrintf(max_size * 3.4);
add_delay(millisecondsToDelay);
// Stop if there were no more packets to add.
if(!added_any_packets)
break;
}
// Add the master data.
vector<PanelLightGraphic::upload_packet> masterPackets;
ProtocolHelpers::CreateUploadPackets(masterPackets, &master_animation_data, 0, sizeof(master_animation_data), 0xFF, type);
masterPackets.back().final_packet = true;
for(const auto &packet: masterPackets)
add_packet_command(packet);
return true;
}
// Start sending a prepared upload.
//
// The commands to send to upload the data are in LightsUploadData::commands[pad].
void SMX_LightsUpload_BeginUpload(int pad, SMX_LightsUploadCallback pCallback, void *pUser)
{
shared_ptr<SMXDevice> pDevice = SMXManager::g_pSMX->GetDevice(pad);
vector<string> asCommands = LightsUploadData::commands[pad];
int iTotalCommands = asCommands.size();
// Queue all commands at once. As each command finishes, our callback
// will be called.
for(int i = 0; i < asCommands.size(); ++i)
{
const string &sCommand = asCommands[i];
pDevice->SendCommand(sCommand, [i, iTotalCommands, pCallback, pUser](string response) {
// Command #i has finished being sent.
//
// If this isn't the last command, make sure progress isn't 100.
// Once we send 100%, the callback is no longer valid.
int progress;
if(i != iTotalCommands-1)
progress = min((i*100) / (iTotalCommands - 1), 99);
else
progress = 100;
// We're currently in the SMXManager thread. Call the user thread from
// the user callback thread.
SMXManager::g_pSMX->RunInHelperThread([pCallback, pUser, progress]() {
pCallback(progress, pUser);
});
});
}
}