diff --git a/archives/13/current b/archives/13/current new file mode 100755 index 0000000..0082e22 Binary files /dev/null and b/archives/13/current differ diff --git a/archives/13/src/main.c b/archives/13/src/main.c new file mode 100644 index 0000000..1ffdd99 --- /dev/null +++ b/archives/13/src/main.c @@ -0,0 +1,260 @@ +#include +#include "utils.h" + +/* +Work out the first ten digits of the sum of the following one-hundred 50-digit numbers. + +37107287533902102798797998220837590246510135740250 +46376937677490009712648124896970078050417018260538 +74324986199524741059474233309513058123726617309629 +91942213363574161572522430563301811072406154908250 +23067588207539346171171980310421047513778063246676 +89261670696623633820136378418383684178734361726757 +28112879812849979408065481931592621691275889832738 +44274228917432520321923589422876796487670272189318 +47451445736001306439091167216856844588711603153276 +70386486105843025439939619828917593665686757934951 +62176457141856560629502157223196586755079324193331 +64906352462741904929101432445813822663347944758178 +92575867718337217661963751590579239728245598838407 +58203565325359399008402633568948830189458628227828 +80181199384826282014278194139940567587151170094390 +35398664372827112653829987240784473053190104293586 +86515506006295864861532075273371959191420517255829 +71693888707715466499115593487603532921714970056938 +54370070576826684624621495650076471787294438377604 +53282654108756828443191190634694037855217779295145 +36123272525000296071075082563815656710885258350721 +45876576172410976447339110607218265236877223636045 +17423706905851860660448207621209813287860733969412 +81142660418086830619328460811191061556940512689692 +51934325451728388641918047049293215058642563049483 +62467221648435076201727918039944693004732956340691 +15732444386908125794514089057706229429197107928209 +55037687525678773091862540744969844508330393682126 +18336384825330154686196124348767681297534375946515 +80386287592878490201521685554828717201219257766954 +78182833757993103614740356856449095527097864797581 +16726320100436897842553539920931837441497806860984 +48403098129077791799088218795327364475675590848030 +87086987551392711854517078544161852424320693150332 +59959406895756536782107074926966537676326235447210 +69793950679652694742597709739166693763042633987085 +41052684708299085211399427365734116182760315001271 +65378607361501080857009149939512557028198746004375 +35829035317434717326932123578154982629742552737307 +94953759765105305946966067683156574377167401875275 +88902802571733229619176668713819931811048770190271 +25267680276078003013678680992525463401061632866526 +36270218540497705585629946580636237993140746255962 +24074486908231174977792365466257246923322810917141 +91430288197103288597806669760892938638285025333403 +34413065578016127815921815005561868836468420090470 +23053081172816430487623791969842487255036638784583 +11487696932154902810424020138335124462181441773470 +63783299490636259666498587618221225225512486764533 +67720186971698544312419572409913959008952310058822 +95548255300263520781532296796249481641953868218774 +76085327132285723110424803456124867697064507995236 +37774242535411291684276865538926205024910326572967 +23701913275725675285653248258265463092207058596522 +29798860272258331913126375147341994889534765745501 +18495701454879288984856827726077713721403798879715 +38298203783031473527721580348144513491373226651381 +34829543829199918180278916522431027392251122869539 +40957953066405232632538044100059654939159879593635 +29746152185502371307642255121183693803580388584903 +41698116222072977186158236678424689157993532961922 +62467957194401269043877107275048102390895523597457 +23189706772547915061505504953922979530901129967519 +86188088225875314529584099251203829009407770775672 +11306739708304724483816533873502340845647058077308 +82959174767140363198008187129011875491310547126581 +97623331044818386269515456334926366572897563400500 +42846280183517070527831839425882145521227251250327 +55121603546981200581762165212827652751691296897789 +32238195734329339946437501907836945765883352399886 +75506164965184775180738168837861091527357929701337 +62177842752192623401942399639168044983993173312731 +32924185707147349566916674687634660915035914677504 +99518671430235219628894890102423325116913619626622 +73267460800591547471830798392868535206946944540724 +76841822524674417161514036427982273348055556214818 +97142617910342598647204516893989422179826088076852 +87783646182799346313767754307809363333018982642090 +10848802521674670883215120185883543223812876952786 +71329612474782464538636993009049310363619763878039 +62184073572399794223406235393808339651327408011116 +66627891981488087797941876876144230030984490851411 +60661826293682836764744779239180335110989069790714 +85786944089552990653640447425576083659976645795096 +66024396409905389607120198219976047599490197230297 +64913982680032973156037120041377903785566085089252 +16730939319872750275468906903707539413042652315011 +94809377245048795150954100921645863754710598436791 +78639167021187492431995700641917969777599028300699 +15368713711936614952811305876380278410754449733078 +40789923115535562561142322423255033685442488917353 +44889911501440648020369068063960672322193204149535 +41503128880339536053299340368006977710650566631954 +81234880673210146739058568557934581403627822703280 +82616570773948327592232845941706525094512325230608 +22918802058777319719839450180888072429661980811197 +77158542502016545090413245809786882778948721859617 +72107838435069186155435662884062257473692284509516 +20849603980134001723930671666823555245252804609722 +53503534226472524250874054075591789781264330331690 + +https://projecteuler.net/problem=13 +*/ + +char*getSum(char*sum) { + char*newStr=malloc(52+1); + for (int i=0;i<52;i++) { + newStr[i]=sum[i]+'0'; + } + newStr[52]='\0'; + return newStr; +} + +int main(int argc,char**argv) { + char*vals[]={ + "37107287533902102798797998220837590246510135740250", + "46376937677490009712648124896970078050417018260538", + "74324986199524741059474233309513058123726617309629", + "91942213363574161572522430563301811072406154908250", + "23067588207539346171171980310421047513778063246676", + "89261670696623633820136378418383684178734361726757", + "28112879812849979408065481931592621691275889832738", + "44274228917432520321923589422876796487670272189318", + "47451445736001306439091167216856844588711603153276", + "70386486105843025439939619828917593665686757934951", + "62176457141856560629502157223196586755079324193331", + "64906352462741904929101432445813822663347944758178", + "92575867718337217661963751590579239728245598838407", + "58203565325359399008402633568948830189458628227828", + "80181199384826282014278194139940567587151170094390", + "35398664372827112653829987240784473053190104293586", + "86515506006295864861532075273371959191420517255829", + "71693888707715466499115593487603532921714970056938", + "54370070576826684624621495650076471787294438377604", + "53282654108756828443191190634694037855217779295145", + "36123272525000296071075082563815656710885258350721", + "45876576172410976447339110607218265236877223636045", + "17423706905851860660448207621209813287860733969412", + "81142660418086830619328460811191061556940512689692", + "51934325451728388641918047049293215058642563049483", + "62467221648435076201727918039944693004732956340691", + "15732444386908125794514089057706229429197107928209", + "55037687525678773091862540744969844508330393682126", + "18336384825330154686196124348767681297534375946515", + "80386287592878490201521685554828717201219257766954", + "78182833757993103614740356856449095527097864797581", + "16726320100436897842553539920931837441497806860984", + "48403098129077791799088218795327364475675590848030", + "87086987551392711854517078544161852424320693150332", + "59959406895756536782107074926966537676326235447210", + "69793950679652694742597709739166693763042633987085", + "41052684708299085211399427365734116182760315001271", + "65378607361501080857009149939512557028198746004375", + "35829035317434717326932123578154982629742552737307", + "94953759765105305946966067683156574377167401875275", + "88902802571733229619176668713819931811048770190271", + "25267680276078003013678680992525463401061632866526", + "36270218540497705585629946580636237993140746255962", + "24074486908231174977792365466257246923322810917141", + "91430288197103288597806669760892938638285025333403", + "34413065578016127815921815005561868836468420090470", + "23053081172816430487623791969842487255036638784583", + "11487696932154902810424020138335124462181441773470", + "63783299490636259666498587618221225225512486764533", + "67720186971698544312419572409913959008952310058822", + "95548255300263520781532296796249481641953868218774", + "76085327132285723110424803456124867697064507995236", + "37774242535411291684276865538926205024910326572967", + "23701913275725675285653248258265463092207058596522", + "29798860272258331913126375147341994889534765745501", + "18495701454879288984856827726077713721403798879715", + "38298203783031473527721580348144513491373226651381", + "34829543829199918180278916522431027392251122869539", + "40957953066405232632538044100059654939159879593635", + "29746152185502371307642255121183693803580388584903", + "41698116222072977186158236678424689157993532961922", + "62467957194401269043877107275048102390895523597457", + "23189706772547915061505504953922979530901129967519", + "86188088225875314529584099251203829009407770775672", + "11306739708304724483816533873502340845647058077308", + "82959174767140363198008187129011875491310547126581", + "97623331044818386269515456334926366572897563400500", + "42846280183517070527831839425882145521227251250327", + "55121603546981200581762165212827652751691296897789", + "32238195734329339946437501907836945765883352399886", + "75506164965184775180738168837861091527357929701337", + "62177842752192623401942399639168044983993173312731", + "32924185707147349566916674687634660915035914677504", + "99518671430235219628894890102423325116913619626622", + "73267460800591547471830798392868535206946944540724", + "76841822524674417161514036427982273348055556214818", + "97142617910342598647204516893989422179826088076852", + "87783646182799346313767754307809363333018982642090", + "10848802521674670883215120185883543223812876952786", + "71329612474782464538636993009049310363619763878039", + "62184073572399794223406235393808339651327408011116", + "66627891981488087797941876876144230030984490851411", + "60661826293682836764744779239180335110989069790714", + "85786944089552990653640447425576083659976645795096", + "66024396409905389607120198219976047599490197230297", + "64913982680032973156037120041377903785566085089252", + "16730939319872750275468906903707539413042652315011", + "94809377245048795150954100921645863754710598436791", + "78639167021187492431995700641917969777599028300699", + "15368713711936614952811305876380278410754449733078", + "40789923115535562561142322423255033685442488917353", + "44889911501440648020369068063960672322193204149535", + "41503128880339536053299340368006977710650566631954", + "81234880673210146739058568557934581403627822703280", + "82616570773948327592232845941706525094512325230608", + "22918802058777319719839450180888072429661980811197", + "77158542502016545090413245809786882778948721859617", + "72107838435069186155435662884062257473692284509516", + "20849603980134001723930671666823555245252804609722", + "53503534226472524250874054075591789781264330331690", + }; + + //We need up to 52 digits of space for adding 100 50-digit numbers (max sum of one place value converges up to 1000 exclusive meaning we can expect up to 999.) + char sum[52]={}; + + for (int i=49;i>=0;i--) { + int s=0; + for (int j=0;j<100;j++) { + s+=vals[j][i]-'0'; + printf("s is %d ",s); + } + int marker=i; + printf("\ns starting at %d\n",s); + while (s>0) { + if (s%10+sum[marker+2]<10){ + sum[marker+2]=s%10+sum[marker+2]; + } else { + s+=10*((sum[marker+2]+s%10)/10); + sum[marker+2]=(sum[marker+2]+s%10)%10; + } + s/=10; + char*val=getSum(sum); + printf("\n...s:%d (%s)",s,val); + free(val); + marker--; + } + } + + char*val=getSum(sum); + printf("\n\nSum is %s",val); + printf("\nFirst ten digits: "); + for (int i=0;i<10;i++) { + printf("%c",val[i]); + } + printf("\n"); + free(val); + + return 0; +} \ No newline at end of file diff --git a/archives/13/src/utils.h b/archives/13/src/utils.h new file mode 100644 index 0000000..d785fa2 --- /dev/null +++ b/archives/13/src/utils.h @@ -0,0 +1,7 @@ +#define true 1 +#define false 0 +#define boolean char +struct String{ + int length; + char*str; +}; \ No newline at end of file diff --git a/current b/current index d5a5c9d..0082e22 100755 Binary files a/current and b/current differ diff --git a/src/main.c b/src/main.c index 28b6430..1ffdd99 100644 --- a/src/main.c +++ b/src/main.c @@ -2,52 +2,259 @@ #include "utils.h" /* -The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be: +Work out the first ten digits of the sum of the following one-hundred 50-digit numbers. -1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... +37107287533902102798797998220837590246510135740250 +46376937677490009712648124896970078050417018260538 +74324986199524741059474233309513058123726617309629 +91942213363574161572522430563301811072406154908250 +23067588207539346171171980310421047513778063246676 +89261670696623633820136378418383684178734361726757 +28112879812849979408065481931592621691275889832738 +44274228917432520321923589422876796487670272189318 +47451445736001306439091167216856844588711603153276 +70386486105843025439939619828917593665686757934951 +62176457141856560629502157223196586755079324193331 +64906352462741904929101432445813822663347944758178 +92575867718337217661963751590579239728245598838407 +58203565325359399008402633568948830189458628227828 +80181199384826282014278194139940567587151170094390 +35398664372827112653829987240784473053190104293586 +86515506006295864861532075273371959191420517255829 +71693888707715466499115593487603532921714970056938 +54370070576826684624621495650076471787294438377604 +53282654108756828443191190634694037855217779295145 +36123272525000296071075082563815656710885258350721 +45876576172410976447339110607218265236877223636045 +17423706905851860660448207621209813287860733969412 +81142660418086830619328460811191061556940512689692 +51934325451728388641918047049293215058642563049483 +62467221648435076201727918039944693004732956340691 +15732444386908125794514089057706229429197107928209 +55037687525678773091862540744969844508330393682126 +18336384825330154686196124348767681297534375946515 +80386287592878490201521685554828717201219257766954 +78182833757993103614740356856449095527097864797581 +16726320100436897842553539920931837441497806860984 +48403098129077791799088218795327364475675590848030 +87086987551392711854517078544161852424320693150332 +59959406895756536782107074926966537676326235447210 +69793950679652694742597709739166693763042633987085 +41052684708299085211399427365734116182760315001271 +65378607361501080857009149939512557028198746004375 +35829035317434717326932123578154982629742552737307 +94953759765105305946966067683156574377167401875275 +88902802571733229619176668713819931811048770190271 +25267680276078003013678680992525463401061632866526 +36270218540497705585629946580636237993140746255962 +24074486908231174977792365466257246923322810917141 +91430288197103288597806669760892938638285025333403 +34413065578016127815921815005561868836468420090470 +23053081172816430487623791969842487255036638784583 +11487696932154902810424020138335124462181441773470 +63783299490636259666498587618221225225512486764533 +67720186971698544312419572409913959008952310058822 +95548255300263520781532296796249481641953868218774 +76085327132285723110424803456124867697064507995236 +37774242535411291684276865538926205024910326572967 +23701913275725675285653248258265463092207058596522 +29798860272258331913126375147341994889534765745501 +18495701454879288984856827726077713721403798879715 +38298203783031473527721580348144513491373226651381 +34829543829199918180278916522431027392251122869539 +40957953066405232632538044100059654939159879593635 +29746152185502371307642255121183693803580388584903 +41698116222072977186158236678424689157993532961922 +62467957194401269043877107275048102390895523597457 +23189706772547915061505504953922979530901129967519 +86188088225875314529584099251203829009407770775672 +11306739708304724483816533873502340845647058077308 +82959174767140363198008187129011875491310547126581 +97623331044818386269515456334926366572897563400500 +42846280183517070527831839425882145521227251250327 +55121603546981200581762165212827652751691296897789 +32238195734329339946437501907836945765883352399886 +75506164965184775180738168837861091527357929701337 +62177842752192623401942399639168044983993173312731 +32924185707147349566916674687634660915035914677504 +99518671430235219628894890102423325116913619626622 +73267460800591547471830798392868535206946944540724 +76841822524674417161514036427982273348055556214818 +97142617910342598647204516893989422179826088076852 +87783646182799346313767754307809363333018982642090 +10848802521674670883215120185883543223812876952786 +71329612474782464538636993009049310363619763878039 +62184073572399794223406235393808339651327408011116 +66627891981488087797941876876144230030984490851411 +60661826293682836764744779239180335110989069790714 +85786944089552990653640447425576083659976645795096 +66024396409905389607120198219976047599490197230297 +64913982680032973156037120041377903785566085089252 +16730939319872750275468906903707539413042652315011 +94809377245048795150954100921645863754710598436791 +78639167021187492431995700641917969777599028300699 +15368713711936614952811305876380278410754449733078 +40789923115535562561142322423255033685442488917353 +44889911501440648020369068063960672322193204149535 +41503128880339536053299340368006977710650566631954 +81234880673210146739058568557934581403627822703280 +82616570773948327592232845941706525094512325230608 +22918802058777319719839450180888072429661980811197 +77158542502016545090413245809786882778948721859617 +72107838435069186155435662884062257473692284509516 +20849603980134001723930671666823555245252804609722 +53503534226472524250874054075591789781264330331690 -Let us list the factors of the first seven triangle numbers: +https://projecteuler.net/problem=13 +*/ - 1: 1 - 3: 1,3 - 6: 1,2,3,6 -10: 1,2,5,10 -15: 1,3,5,15 -21: 1,3,7,21 -28: 1,2,4,7,14,28 -We can see that 28 is the first triangle number to have over five divisors. +char*getSum(char*sum) { + char*newStr=malloc(52+1); + for (int i=0;i<52;i++) { + newStr[i]=sum[i]+'0'; + } + newStr[52]='\0'; + return newStr; +} -What is the value of the first triangle number to have over five hundred divisors? +int main(int argc,char**argv) { + char*vals[]={ + "37107287533902102798797998220837590246510135740250", + "46376937677490009712648124896970078050417018260538", + "74324986199524741059474233309513058123726617309629", + "91942213363574161572522430563301811072406154908250", + "23067588207539346171171980310421047513778063246676", + "89261670696623633820136378418383684178734361726757", + "28112879812849979408065481931592621691275889832738", + "44274228917432520321923589422876796487670272189318", + "47451445736001306439091167216856844588711603153276", + "70386486105843025439939619828917593665686757934951", + "62176457141856560629502157223196586755079324193331", + "64906352462741904929101432445813822663347944758178", + "92575867718337217661963751590579239728245598838407", + "58203565325359399008402633568948830189458628227828", + "80181199384826282014278194139940567587151170094390", + "35398664372827112653829987240784473053190104293586", + "86515506006295864861532075273371959191420517255829", + "71693888707715466499115593487603532921714970056938", + "54370070576826684624621495650076471787294438377604", + "53282654108756828443191190634694037855217779295145", + "36123272525000296071075082563815656710885258350721", + "45876576172410976447339110607218265236877223636045", + "17423706905851860660448207621209813287860733969412", + "81142660418086830619328460811191061556940512689692", + "51934325451728388641918047049293215058642563049483", + "62467221648435076201727918039944693004732956340691", + "15732444386908125794514089057706229429197107928209", + "55037687525678773091862540744969844508330393682126", + "18336384825330154686196124348767681297534375946515", + "80386287592878490201521685554828717201219257766954", + "78182833757993103614740356856449095527097864797581", + "16726320100436897842553539920931837441497806860984", + "48403098129077791799088218795327364475675590848030", + "87086987551392711854517078544161852424320693150332", + "59959406895756536782107074926966537676326235447210", + "69793950679652694742597709739166693763042633987085", + "41052684708299085211399427365734116182760315001271", + "65378607361501080857009149939512557028198746004375", + "35829035317434717326932123578154982629742552737307", + "94953759765105305946966067683156574377167401875275", + "88902802571733229619176668713819931811048770190271", + "25267680276078003013678680992525463401061632866526", + "36270218540497705585629946580636237993140746255962", + "24074486908231174977792365466257246923322810917141", + "91430288197103288597806669760892938638285025333403", + "34413065578016127815921815005561868836468420090470", + "23053081172816430487623791969842487255036638784583", + "11487696932154902810424020138335124462181441773470", + "63783299490636259666498587618221225225512486764533", + "67720186971698544312419572409913959008952310058822", + "95548255300263520781532296796249481641953868218774", + "76085327132285723110424803456124867697064507995236", + "37774242535411291684276865538926205024910326572967", + "23701913275725675285653248258265463092207058596522", + "29798860272258331913126375147341994889534765745501", + "18495701454879288984856827726077713721403798879715", + "38298203783031473527721580348144513491373226651381", + "34829543829199918180278916522431027392251122869539", + "40957953066405232632538044100059654939159879593635", + "29746152185502371307642255121183693803580388584903", + "41698116222072977186158236678424689157993532961922", + "62467957194401269043877107275048102390895523597457", + "23189706772547915061505504953922979530901129967519", + "86188088225875314529584099251203829009407770775672", + "11306739708304724483816533873502340845647058077308", + "82959174767140363198008187129011875491310547126581", + "97623331044818386269515456334926366572897563400500", + "42846280183517070527831839425882145521227251250327", + "55121603546981200581762165212827652751691296897789", + "32238195734329339946437501907836945765883352399886", + "75506164965184775180738168837861091527357929701337", + "62177842752192623401942399639168044983993173312731", + "32924185707147349566916674687634660915035914677504", + "99518671430235219628894890102423325116913619626622", + "73267460800591547471830798392868535206946944540724", + "76841822524674417161514036427982273348055556214818", + "97142617910342598647204516893989422179826088076852", + "87783646182799346313767754307809363333018982642090", + "10848802521674670883215120185883543223812876952786", + "71329612474782464538636993009049310363619763878039", + "62184073572399794223406235393808339651327408011116", + "66627891981488087797941876876144230030984490851411", + "60661826293682836764744779239180335110989069790714", + "85786944089552990653640447425576083659976645795096", + "66024396409905389607120198219976047599490197230297", + "64913982680032973156037120041377903785566085089252", + "16730939319872750275468906903707539413042652315011", + "94809377245048795150954100921645863754710598436791", + "78639167021187492431995700641917969777599028300699", + "15368713711936614952811305876380278410754449733078", + "40789923115535562561142322423255033685442488917353", + "44889911501440648020369068063960672322193204149535", + "41503128880339536053299340368006977710650566631954", + "81234880673210146739058568557934581403627822703280", + "82616570773948327592232845941706525094512325230608", + "22918802058777319719839450180888072429661980811197", + "77158542502016545090413245809786882778948721859617", + "72107838435069186155435662884062257473692284509516", + "20849603980134001723930671666823555245252804609722", + "53503534226472524250874054075591789781264330331690", + }; -https://projecteuler.net/problem=12 -*/ + //We need up to 52 digits of space for adding 100 50-digit numbers (max sum of one place value converges up to 1000 exclusive meaning we can expect up to 999.) + char sum[52]={}; -int main(int argc,char**argv) { - int counter=1; - long sum=0; - while (true) { - sum+=counter; - printf("Checking %ld...\n",sum); - int current=1; - int max=sum; - int divisorCount=0; - while (current=0;i--) { + int s=0; + for (int j=0;j<100;j++) { + s+=vals[j][i]-'0'; + printf("s is %d ",s); } - printf(" has %d divisors.\n",divisorCount); - if (divisorCount>500) { - printf("\n\nNumber %ld has %d divisors!",sum,divisorCount); - return 0; + int marker=i; + printf("\ns starting at %d\n",s); + while (s>0) { + if (s%10+sum[marker+2]<10){ + sum[marker+2]=s%10+sum[marker+2]; + } else { + s+=10*((sum[marker+2]+s%10)/10); + sum[marker+2]=(sum[marker+2]+s%10)%10; + } + s/=10; + char*val=getSum(sum); + printf("\n...s:%d (%s)",s,val); + free(val); + marker--; } - counter++; } + + char*val=getSum(sum); + printf("\n\nSum is %s",val); + printf("\nFirst ten digits: "); + for (int i=0;i<10;i++) { + printf("%c",val[i]); + } + printf("\n"); + free(val); + return 0; } \ No newline at end of file