parent
693ee1e4ae
commit
6ca700a8ef
Binary file not shown.
@ -0,0 +1,44 @@ |
||||
#include <stdio.h> |
||||
#include "utils.h" |
||||
#include <stdlib.h> |
||||
|
||||
/*
|
||||
The Fibonacci sequence is defined by the recurrence relation: |
||||
|
||||
Fn = Fn−1 + Fn−2, where F1 = 1 and F2 = 1. |
||||
Hence the first 12 terms will be: |
||||
|
||||
F1 = 1 |
||||
F2 = 1 |
||||
F3 = 2 |
||||
F4 = 3 |
||||
F5 = 5 |
||||
F6 = 8 |
||||
F7 = 13 |
||||
F8 = 21 |
||||
F9 = 34 |
||||
F10 = 55 |
||||
F11 = 89 |
||||
F12 = 144 |
||||
The 12th term, F12, is the first term to contain three digits. |
||||
|
||||
What is the index of the first term in the Fibonacci sequence to contain 1000 digits? |
||||
|
||||
https://projecteuler.net/problem=24
|
||||
*/ |
||||
|
||||
int main(int argc,char**argv) { |
||||
struct String numb1 = BigNumber(1); |
||||
struct String numb2 = BigNumber(1); |
||||
int term=3; |
||||
while (numb2.length<1000) { |
||||
struct String oldString = numb1; |
||||
numb1 = numb2; |
||||
numb2 = add(oldString,numb1);
|
||||
//free(oldString.str);
|
||||
//printf("%d: %s\n",term,numb2.str);
|
||||
term++; |
||||
} |
||||
printf("\n\nTerm %d has %d digits!",term,numb2.length); |
||||
return 0; |
||||
} |
@ -0,0 +1,140 @@ |
||||
#include "utils.h" |
||||
#include <stdio.h> |
||||
#include <stdlib.h> |
||||
|
||||
struct String mult(struct String numb1, struct String numb2) { |
||||
struct String n1 = numb1; |
||||
struct String n2 = numb2; |
||||
byte carryover = 0; |
||||
if (numb2.length>numb1.length) { |
||||
n1=numb2; |
||||
n2=numb1; |
||||
} |
||||
int addends[n2.length][n1.length+1]; |
||||
for (int i=0;i<n2.length;i++) { |
||||
for (int j=0;j<n1.length+1;j++) { |
||||
addends[i][j]=0; |
||||
} |
||||
} |
||||
for (int i=n2.length-1;i>=0;i--) { |
||||
carryover=0; |
||||
for (int j=n1.length-1;j>=0;j--) { |
||||
int mult = (n1.str[j]-'0')*(n2.str[i]-'0')+((carryover!=0)?carryover:0); |
||||
//printf(" %d/%d\n",mult,carryover);
|
||||
carryover=0; |
||||
if (mult>=10) { |
||||
carryover=mult/10; |
||||
mult=mult%10; |
||||
} |
||||
addends[(n2.length-1)-i][j+1]=mult; |
||||
} |
||||
if (carryover>0) { |
||||
addends[(n2.length-1)-i][0]=carryover; |
||||
} |
||||
} |
||||
//printIntDoubleArr(n2.length,n1.length+1,addends);
|
||||
struct String sum = {1,"0"}; |
||||
for (int i=0;i<n2.length;i++) { |
||||
char val[n1.length+1+i]; |
||||
for (int j=0;j<n1.length+1+i;j++) { |
||||
val[j]='0'; |
||||
} |
||||
for (int j=0;j<n1.length+1;j++) { |
||||
val[j]=addends[i][j]+'0'; |
||||
} |
||||
sum=add((struct String){n1.length+1+i,val},sum); |
||||
//printf("%s\n",sum.str);
|
||||
} |
||||
if (sum.str[0]=='0') { |
||||
char*newStr=malloc(sum.length-1); |
||||
for (int i=1;i<sum.length;i++) { |
||||
newStr[i-1]=sum.str[i]; |
||||
} |
||||
free(sum.str); |
||||
sum=(struct String){sum.length-1,newStr}; |
||||
} |
||||
//printf("%s",sum.str);
|
||||
return sum; |
||||
} |
||||
|
||||
struct String add(struct String numb1, struct String numb2){ |
||||
//printf("%s %s\n",numb1.str,numb2.str);
|
||||
byte carryover=0; |
||||
int digitCount=0; |
||||
char*str = malloc(1); |
||||
//str[0]='\0';
|
||||
if (numb1.length>=numb2.length) { |
||||
for (int offset=0;offset<numb1.length;offset++) { |
||||
str = realloc(str,++digitCount); |
||||
//printf("Digit count is now %d\n",digitCount);
|
||||
if (numb2.length>offset) { |
||||
//printf("%c %c\n",numb1.str[numb1.length-offset-1],numb2.str[numb2.length-offset-1]);
|
||||
int sum=((numb1.str[numb1.length-offset-1]-'0')+(numb2.str[numb2.length-offset-1]-'0'))+((carryover>0)?carryover--:0); |
||||
if (sum>=10) { |
||||
carryover=1; |
||||
sum-=10; |
||||
} |
||||
str[offset]=sum+'0'; |
||||
} else { |
||||
str[offset]=numb1.str[numb1.length-offset-1]+((carryover>0)?carryover--:0); |
||||
} |
||||
//str[offset+1]='\0';
|
||||
} |
||||
} else { |
||||
for (int offset=0;offset<numb2.length;offset++) { |
||||
str = realloc(str,++digitCount); |
||||
//printf("Digit count is now %d\n",digitCount);
|
||||
if (numb1.length>offset) { |
||||
//printf("%c %c\n",numb1.str[numb1.length-offset-1],numb2.str[numb2.length-offset-1]);
|
||||
int sum=((numb1.str[numb1.length-offset-1]-'0')+(numb2.str[numb2.length-offset-1]-'0'))+((carryover>0)?carryover--:0); |
||||
if (sum>=10) { |
||||
carryover=1; |
||||
sum-=10; |
||||
} |
||||
str[offset]=sum+'0'; |
||||
} else { |
||||
str[offset]=numb2.str[numb2.length-offset-1]+((carryover>0)?carryover--:0); |
||||
} |
||||
//str[offset+1]='\0';
|
||||
} |
||||
} |
||||
if (carryover>0) { |
||||
str = realloc(str,++digitCount); |
||||
str[digitCount-1]='1'; |
||||
//str[digitCount]='\0';
|
||||
} |
||||
for (int i=0;i<digitCount/2;i++) { |
||||
char c = str[i]; |
||||
char c2 = str[digitCount-i-1]; |
||||
str[digitCount-i-1]=c; |
||||
str[i]=c2; |
||||
} |
||||
str = realloc(str,digitCount+1); |
||||
str[digitCount]='\0'; |
||||
struct String newStr = {digitCount,str}; |
||||
return newStr; |
||||
} |
||||
|
||||
void printLongDoubleArr(int a,int b,long doubleArr[a][b]) { |
||||
for (int i=0;i<a;i++) { |
||||
for (int j=0;j<b;j++) { |
||||
printf("%ld\t",doubleArr[i][j]); |
||||
} |
||||
printf("\n"); |
||||
} |
||||
} |
||||
|
||||
void printIntDoubleArr(int a,int b,int doubleArr[a][b]) { |
||||
for (int i=0;i<a;i++) { |
||||
for (int j=0;j<b;j++) { |
||||
printf("%d\t",doubleArr[i][j]); |
||||
} |
||||
printf("\n"); |
||||
} |
||||
} |
||||
|
||||
struct String createBigNumber(char*numb) { |
||||
int marker=0; |
||||
while (numb[marker++]!='\0'); |
||||
return (struct String){marker-1,numb}; |
||||
} |
@ -0,0 +1,14 @@ |
||||
#define true 1 |
||||
#define false 0 |
||||
#define boolean char |
||||
#define byte char |
||||
struct String{ |
||||
int length; |
||||
char*str; |
||||
}; |
||||
struct String add(struct String numb1, struct String numb2); |
||||
struct String mult(struct String numb1, struct String numb2); |
||||
void printLongDoubleArr(int a,int b,long doubleArr[a][b]); |
||||
void printIntDoubleArr(int a,int b,int doubleArr[a][b]); |
||||
struct String createBigNumber(char*numb); |
||||
#define BigNumber(X) createBigNumber(#X) |
@ -1,79 +1,44 @@ |
||||
#include <stdio.h> |
||||
#include "utils.h" |
||||
#include <stdlib.h> |
||||
|
||||
/*
|
||||
A permutation is an ordered arrangement of objects. For example, 3124 is one possible permutation of the digits 1, 2, 3 and 4. If all of the permutations are listed numerically or alphabetically, we call it lexicographic order. The lexicographic permutations of 0, 1 and 2 are: |
||||
|
||||
012 021 102 120 201 210 |
||||
|
||||
What is the millionth lexicographic permutation of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9? |
||||
The Fibonacci sequence is defined by the recurrence relation: |
||||
|
||||
Fn = Fn−1 + Fn−2, where F1 = 1 and F2 = 1. |
||||
Hence the first 12 terms will be: |
||||
|
||||
F1 = 1 |
||||
F2 = 1 |
||||
F3 = 2 |
||||
F4 = 3 |
||||
F5 = 5 |
||||
F6 = 8 |
||||
F7 = 13 |
||||
F8 = 21 |
||||
F9 = 34 |
||||
F10 = 55 |
||||
F11 = 89 |
||||
F12 = 144 |
||||
The 12th term, F12, is the first term to contain three digits. |
||||
|
||||
What is the index of the first term in the Fibonacci sequence to contain 1000 digits? |
||||
|
||||
https://projecteuler.net/problem=24
|
||||
*/ |
||||
|
||||
void carryover(int*arr,int digit) { |
||||
arr[digit]=0; |
||||
if (arr[digit-1]==9) { |
||||
carryover(arr,digit-1); |
||||
} else { |
||||
arr[digit-1]++; |
||||
} |
||||
} |
||||
|
||||
void incrementDigit(int*arr) { |
||||
int val = arr[9]; |
||||
if (arr[9]==9) { |
||||
carryover(arr,9); |
||||
} else { |
||||
arr[9]++; |
||||
} |
||||
} |
||||
|
||||
boolean allUniqueDigits(int*arr) { |
||||
boolean digits[10] = {}; |
||||
for (int i=0;i<10;i++) { |
||||
if (!digits[arr[i]]) { |
||||
digits[arr[i]]=true; |
||||
} else { |
||||
return false; |
||||
} |
||||
} |
||||
return true; |
||||
} |
||||
|
||||
int factorial(int numb) { |
||||
int final=1; |
||||
for (int i=numb;i>=1;i--) { |
||||
final*=i; |
||||
} |
||||
return final; |
||||
} |
||||
|
||||
int main(int argc,char**argv) { |
||||
|
||||
//For permutations, we know that there are a total of N! permutations.
|
||||
// Which means each individual set starts at N!/N. So we can skip ahead some permutations.
|
||||
// For 10 numbers, we get 362,880 values per permutation set. So 1000000/362880 = 2. So we'll start at permutation two.
|
||||
int setPermutationCount=factorial(10)/10; |
||||
int permutationCount=(1000000/setPermutationCount)*setPermutationCount; |
||||
int digits[10]={2,0,1,3,4,5,6,7,8,9}; |
||||
while ((digits[0]!=9||digits[1]!=8||digits[2]!=7||digits[3]!=6||digits[4]!=5||digits[5]!=4||digits[6]!=3||digits[7]!=2||digits[8]!=1||digits[9]!=0)&&permutationCount!=999999) { |
||||
incrementDigit(digits); |
||||
if (allUniqueDigits(digits)) { |
||||
permutationCount++; |
||||
printf("%d:",permutationCount); |
||||
for (int i=0;i<10;i++) { |
||||
printf(" %d ",digits[i]); |
||||
} |
||||
printf("\n"); |
||||
} |
||||
struct String numb1 = BigNumber(1); |
||||
struct String numb2 = BigNumber(1); |
||||
int term=3; |
||||
while (numb2.length<1000) { |
||||
struct String oldString = numb1; |
||||
numb1 = numb2; |
||||
numb2 = add(oldString,numb1);
|
||||
//free(oldString.str);
|
||||
//printf("%d: %s\n",term,numb2.str);
|
||||
term++; |
||||
} |
||||
|
||||
printf("\n\nThe one millionth lexicographic permutation is: \n\t"); |
||||
for (int i=0;i<10;i++) { |
||||
printf("%d",digits[i]); |
||||
} |
||||
|
||||
|
||||
printf("\n\nTerm %d has %d digits!",term,numb2.length); |
||||
return 0; |
||||
} |
Loading…
Reference in new issue