|
|
|
@ -3,42 +3,220 @@ |
|
|
|
|
#include <stdlib.h> |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
The Fibonacci sequence is defined by the recurrence relation: |
|
|
|
|
|
|
|
|
|
Fn = Fn−1 + Fn−2, where F1 = 1 and F2 = 1. |
|
|
|
|
Hence the first 12 terms will be: |
|
|
|
|
|
|
|
|
|
F1 = 1 |
|
|
|
|
F2 = 1 |
|
|
|
|
F3 = 2 |
|
|
|
|
F4 = 3 |
|
|
|
|
F5 = 5 |
|
|
|
|
F6 = 8 |
|
|
|
|
F7 = 13 |
|
|
|
|
F8 = 21 |
|
|
|
|
F9 = 34 |
|
|
|
|
F10 = 55 |
|
|
|
|
F11 = 89 |
|
|
|
|
F12 = 144 |
|
|
|
|
The 12th term, F12, is the first term to contain three digits. |
|
|
|
|
|
|
|
|
|
What is the index of the first term in the Fibonacci sequence to contain 1000 digits? |
|
|
|
|
|
|
|
|
|
https://projecteuler.net/problem=24
|
|
|
|
|
A unit fraction contains 1 in the numerator. The decimal representation of the unit fractions with denominators 2 to 10 are given: |
|
|
|
|
|
|
|
|
|
1/2 = 0.5 |
|
|
|
|
1/3 = 0.(3) |
|
|
|
|
1/4 = 0.25 |
|
|
|
|
1/5 = 0.2 |
|
|
|
|
1/6 = 0.1(6) |
|
|
|
|
1/7 = 0.(142857) |
|
|
|
|
1/8 = 0.125 |
|
|
|
|
1/9 = 0.(1) |
|
|
|
|
1/10 = 0.1 |
|
|
|
|
Where 0.1(6) means 0.166666..., and has a 1-digit recurring cycle. It can be seen that 1/7 has a 6-digit recurring cycle. |
|
|
|
|
|
|
|
|
|
Find the value of d < 1000 for which 1/d contains the longest recurring cycle in its decimal fraction part. |
|
|
|
|
|
|
|
|
|
https://projecteuler.net/problem=26
|
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
boolean isPrime(int*primeList,int primeListSize,int numb) { |
|
|
|
|
for (int i=0;i<primeListSize;i++) { |
|
|
|
|
if (numb==primeList[i]) { |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int*getFactors(int numb) { |
|
|
|
|
int*factorList=malloc(sizeof(int)*1); |
|
|
|
|
int factorListSize=2; |
|
|
|
|
factorList[0]=1; |
|
|
|
|
factorList[1]=numb; |
|
|
|
|
int max=numb; |
|
|
|
|
for (int i=2;i<max;i++) { |
|
|
|
|
if (numb%i==0) { |
|
|
|
|
factorList=realloc(factorList,sizeof(int)*++factorListSize); |
|
|
|
|
factorList[factorListSize-1]=i; |
|
|
|
|
} |
|
|
|
|
if (numb/i!=i) { |
|
|
|
|
factorList=realloc(factorList,sizeof(int)*++factorListSize); |
|
|
|
|
factorList[factorListSize-1]=numb/i; |
|
|
|
|
max=numb/i; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
factorList=realloc(factorList,sizeof(int)*++factorListSize); |
|
|
|
|
factorList[factorListSize-1]=0; |
|
|
|
|
return factorList; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
boolean isFactor(int*factorList,int numb) { |
|
|
|
|
int counter=0; |
|
|
|
|
while (factorList[counter]!=0) { |
|
|
|
|
if (numb==factorList[counter]) { |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
counter++; |
|
|
|
|
} |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
boolean isFactorMinusOne(int*factorList,int numb) { |
|
|
|
|
int counter=0; |
|
|
|
|
while (factorList[counter]!=0) { |
|
|
|
|
if (numb==factorList[counter]) { |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
counter++; |
|
|
|
|
} |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
const int TARGET_REPEATS_REQUIRED=100000; |
|
|
|
|
|
|
|
|
|
int main(int argc,char**argv) { |
|
|
|
|
struct String numb1 = BigNumber(1); |
|
|
|
|
struct String numb2 = BigNumber(1); |
|
|
|
|
int term=3; |
|
|
|
|
while (numb2.length<1000) { |
|
|
|
|
struct String oldString = numb1; |
|
|
|
|
numb1 = numb2; |
|
|
|
|
numb2 = add(oldString,numb1);
|
|
|
|
|
//free(oldString.str);
|
|
|
|
|
//printf("%d: %s\n",term,numb2.str);
|
|
|
|
|
term++; |
|
|
|
|
} |
|
|
|
|
printf("\n\nTerm %d has %d digits!",term,numb2.length); |
|
|
|
|
int divider=0; |
|
|
|
|
int divisor=997; |
|
|
|
|
int sequence[TARGET_REPEATS_REQUIRED]; //Let's assume for the sake of sanity that 100000 repeating digits is enough. I sure hope so.
|
|
|
|
|
int sequenceLength=0; |
|
|
|
|
int sequenceRepeat=0; |
|
|
|
|
int sequenceMarker=-1; |
|
|
|
|
int longestCycleLength=0; |
|
|
|
|
int longestCycleDivisor=0; |
|
|
|
|
int longestSequence[TARGET_REPEATS_REQUIRED/10]; |
|
|
|
|
int*primeList=malloc(sizeof(int)*0); |
|
|
|
|
int primeListSize=0; |
|
|
|
|
|
|
|
|
|
FILE*f = fopen("archives/primegenerator/primes","r"); |
|
|
|
|
while (fgetc(f)!='{'); |
|
|
|
|
while (true) { |
|
|
|
|
char c; |
|
|
|
|
int digit=0; |
|
|
|
|
while ((c=fgetc(f))!=',') { |
|
|
|
|
digit*=10; |
|
|
|
|
digit+=c-'0'; |
|
|
|
|
}
|
|
|
|
|
if (digit>=1000) { |
|
|
|
|
break; |
|
|
|
|
} else { |
|
|
|
|
primeList=realloc(primeList,sizeof(int)*++primeListSize); |
|
|
|
|
primeList[primeListSize-1]=digit; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
while (divisor<999) { |
|
|
|
|
divider=10; //We always start with 10.
|
|
|
|
|
sequenceLength=0; |
|
|
|
|
sequenceRepeat=0; |
|
|
|
|
for (int i=0;i<sequenceLength;i++) { |
|
|
|
|
sequence[i]=0; |
|
|
|
|
} |
|
|
|
|
sequenceMarker=-1; |
|
|
|
|
while (sequenceLength<TARGET_REPEATS_REQUIRED) { |
|
|
|
|
int result=divider/divisor; |
|
|
|
|
//printf("%d/%d = %d\n",divider,divisor,result);
|
|
|
|
|
divider=divider%divisor; |
|
|
|
|
sequence[sequenceLength++]=result; |
|
|
|
|
divider*=10; |
|
|
|
|
if (divider==0) { |
|
|
|
|
//We're solved.
|
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
/*printf("%d:",divisor);
|
|
|
|
|
for (int i=0;i<sequenceLength;i++) { |
|
|
|
|
printf("%d",sequence[i]); |
|
|
|
|
} |
|
|
|
|
printf("\n");*/ |
|
|
|
|
//We need to look at all combinations of possible repeating sequences.
|
|
|
|
|
//Starting from iteration loop of length 1, and an offset incrementing by 1, see if anything remains the same.
|
|
|
|
|
//Then do this for iteration loop of length 2, offset incrementing by 1, etc.
|
|
|
|
|
//Find it repeating at least 20 times to assume it repeats infinitely.
|
|
|
|
|
boolean isP = isPrime(primeList,primeListSize,divisor); |
|
|
|
|
int*factors = getFactors(divisor); |
|
|
|
|
int counter=0; |
|
|
|
|
/*if (isP) {
|
|
|
|
|
printf("Factors of %d:",divisor); |
|
|
|
|
while (factors[counter]!=0) { |
|
|
|
|
printf("%d,",factors[counter]); |
|
|
|
|
counter++; |
|
|
|
|
} |
|
|
|
|
printf("\n"); |
|
|
|
|
}*/ |
|
|
|
|
boolean matched=false; |
|
|
|
|
if (sequenceLength==TARGET_REPEATS_REQUIRED) { |
|
|
|
|
for (int checkLength=0;checkLength<TARGET_REPEATS_REQUIRED/10;checkLength++) { |
|
|
|
|
if (isP&&!isFactorMinusOne(factors,checkLength+1)) {continue;} |
|
|
|
|
for (int offset=0;offset<sequenceLength+1-checkLength;offset++) { |
|
|
|
|
int sequenceStore[checkLength+1]; |
|
|
|
|
int requiredCheckAmt=TARGET_REPEATS_REQUIRED/10-2; |
|
|
|
|
for (int i=0;i<checkLength+1;i++) { |
|
|
|
|
sequenceStore[i]=sequence[i+offset]; |
|
|
|
|
/*printf("%d:",divisor);
|
|
|
|
|
for (int i=0;i<checkLength+1;i++) { |
|
|
|
|
printf("%d",sequenceStore[i]); |
|
|
|
|
} |
|
|
|
|
0010030090270812437311935807422266800401203610832497492477432296890672016048144433299899699097291875626880641925777331995987963891675025075225677031093279839518555667 |
|
|
|
|
0010030090270812437311935807422266800401203610832497492477432296890672016048144433299899699097291875626880641925777331995987963891675025075225677031093279839518555667 |
|
|
|
|
printf("\n");*/ |
|
|
|
|
} |
|
|
|
|
//Now if this repeating sequence can be found requiredCheckAmt times, we're golden.
|
|
|
|
|
boolean allMatching=true; |
|
|
|
|
int currentOffset=0; |
|
|
|
|
int found=0; |
|
|
|
|
while (requiredCheckAmt>0&&found<20) { |
|
|
|
|
for (int i=0;i<checkLength+1;i++) { |
|
|
|
|
//printf(" Compare %d to %d\n",sequence[offset+currentOffset+checkLength+1+i],sequenceStore[i]);
|
|
|
|
|
if (sequence[offset+currentOffset+checkLength+1+i]!=sequenceStore[i]) { |
|
|
|
|
allMatching=false; |
|
|
|
|
goto check; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
requiredCheckAmt--; |
|
|
|
|
currentOffset+=checkLength+1; |
|
|
|
|
found++; |
|
|
|
|
//printf("Found a repeat.");
|
|
|
|
|
} |
|
|
|
|
check: |
|
|
|
|
if (allMatching) { |
|
|
|
|
printf("Longest repeating sequence for %d is of length %d: ",divisor,checkLength+1); |
|
|
|
|
for (int i=0;i<checkLength+1;i++) { |
|
|
|
|
printf("%d",sequenceStore[i]); |
|
|
|
|
} |
|
|
|
|
printf("\n"); |
|
|
|
|
if (longestCycleLength<checkLength+1) { |
|
|
|
|
longestCycleLength=checkLength+1; |
|
|
|
|
longestCycleDivisor=divisor; |
|
|
|
|
for (int i=0;i<longestCycleLength;i++) { |
|
|
|
|
longestSequence[i]=sequenceStore[i]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
matched=true; |
|
|
|
|
goto next; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} else { |
|
|
|
|
matched=true; |
|
|
|
|
printf("Longest repeating sequence for %d is of length 0.\n",divisor); |
|
|
|
|
} |
|
|
|
|
next: |
|
|
|
|
free(factors); |
|
|
|
|
if (!matched) { |
|
|
|
|
printf("Not enough data to calculate longest repeating sequence for %d!\nQuitting...\n",divisor); |
|
|
|
|
return 1; |
|
|
|
|
} |
|
|
|
|
divisor++; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
printf("\n\nThe largest repeating sequence length is from %d with %d in length.",longestCycleDivisor,longestCycleLength); |
|
|
|
|
printf("\n\tSequence: "); |
|
|
|
|
for (int i=0;i<longestCycleLength;i++) { |
|
|
|
|
printf("%d",longestSequence[i]); |
|
|
|
|
} |
|
|
|
|
printf("\n"); |
|
|
|
|
|
|
|
|
|
return 0; |
|
|
|
|
} |