Display instruction descriptions

Co-authored-by: sigonasr2 <sigonasr2@gmail.com>
master
sigonasr2 2 years ago
parent 886d92c39a
commit d6723d8db8
  1. BIN
      C++ProjectTemplate
  2. BIN
      ChipWar.ch8
  3. 250
      main.cpp
  4. 2
      pixelGameEngine.h

Binary file not shown.

Binary file not shown.

@ -9,8 +9,10 @@
using namespace olc; using namespace olc;
#define WIDTH 640 bool USE_DEBUG_DISPLAY=true;
#define HEIGHT 480 int EMULATOR_SCREEN_WIDTH = 64;
int EMULATOR_SCREEN_HEIGHT = 32;
int EMULATOR_PIXEL_SIZE=5;
class Chip8Emulator : public olc::PixelGameEngine class Chip8Emulator : public olc::PixelGameEngine
{ {
@ -62,6 +64,7 @@ public:
std::uniform_int_distribution<> distrib; std::uniform_int_distribution<> distrib;
std::array<Key,16>keymap{X,K1,K2,K3,Q,W,E,A,S,D,Z,C,K4,R,F,V}; std::array<Key,16>keymap{X,K1,K2,K3,Q,W,E,A,S,D,Z,C,K4,R,F,V};
bool USE_ORIGINAL_CHIP8_SET=true; //True means use the original CHIP-8 spec (COSMAC VIP emulation). Set to false to use CHIP-48 spec. bool USE_ORIGINAL_CHIP8_SET=true; //True means use the original CHIP-8 spec (COSMAC VIP emulation). Set to false to use CHIP-48 spec.
bool PAUSED=true;
std::string Display8(int number){ std::string Display8(int number){
std::bitset<8>numb(number); std::bitset<8>numb(number);
@ -80,7 +83,7 @@ public:
for (int i=0;i<display.size();i++){ for (int i=0;i<display.size();i++){
display[i]=0; display[i]=0;
} }
std::ifstream file("output.ch8",std::ios_base::binary); std::ifstream file("ChipWar.ch8",std::ios_base::binary);
uint16_t counter=0x200; uint16_t counter=0x200;
while (file.good()){ while (file.good()){
int val = file.get(); int val = file.get();
@ -106,6 +109,7 @@ public:
bool OnUserUpdate(float fElapsedTime) override bool OnUserUpdate(float fElapsedTime) override
{ {
if (!USE_DEBUG_DISPLAY||!PAUSED){
pulse+=fElapsedTime; pulse+=fElapsedTime;
if (pulse>=1/60.f){ if (pulse>=1/60.f){
if (delay_timer>0){ if (delay_timer>0){
@ -117,7 +121,211 @@ public:
pulse-=1/60.f; pulse-=1/60.f;
for (int i=0;i<10;i++){ for (int i=0;i<10;i++){
RunInstruction();
}
DrawDisplay();
}
} else {
if (GetKey(OEM_6).bPressed){
RunInstruction();
DrawDisplay();
}
}
std::stringstream s;
s<<"PC: 0x"<<std::setfill('0')<< std::setw(4)<<std::hex<<pc;
DrawStringDecal(vi2d{8,EMULATOR_PIXEL_SIZE*EMULATOR_SCREEN_HEIGHT+16},s.str());
std::stringstream instruction;
instruction<<"0x"<<std::setfill('0')<< std::setw(2)<<std::hex<<(int)memory[pc]<<std::setw(2)<<(int)memory[pc+1];
DrawStringDecal(vi2d{12,EMULATOR_PIXEL_SIZE*EMULATOR_SCREEN_HEIGHT+26},instruction.str());
for (int i=0;i<21;i++){
uint16_t tmp=pc+(i-10)*2;
if (tmp<memory.size()){
std::stringstream tmp_s;
tmp_s<<"0x"<<std::setfill('0')<< std::setw(4)<<std::hex<<tmp<<" "<<std::setw(2)<<(int)memory[tmp]<<std::setw(2)<<(int)memory[tmp+1]<<" "<<GetInstructionDescription(memory[tmp]<<8|memory[tmp+1]);
std::string ss=tmp_s.str();
std::transform(ss.begin(),ss.end(),ss.begin(),::toupper);
DrawStringDecal(vi2d{14+EMULATOR_PIXEL_SIZE*EMULATOR_SCREEN_WIDTH,8+i*10},ss,(tmp==pc)?YELLOW:WHITE);
}
}
return true;
}
bool OnUserDestroy()override{
return true;
}
void DrawDisplay(){
if (USE_DEBUG_DISPLAY){
Clear(VERY_DARK_BLUE);
for (int x=0;x<EMULATOR_SCREEN_WIDTH;x++){
for (int y=0;y<EMULATOR_SCREEN_HEIGHT;y++){
if (display[y*EMULATOR_SCREEN_WIDTH+x]){
screen[y*EMULATOR_SCREEN_WIDTH+x]=255;
FillRect(vi2d{x*EMULATOR_PIXEL_SIZE,y*EMULATOR_PIXEL_SIZE}+vi2d{8,8},vi2d{EMULATOR_PIXEL_SIZE,EMULATOR_PIXEL_SIZE});
} else {
screen[y*EMULATOR_SCREEN_WIDTH+x]=std::max(0,screen[y*EMULATOR_SCREEN_WIDTH+x]-36);
FillRect(vi2d{x*EMULATOR_PIXEL_SIZE,y*EMULATOR_PIXEL_SIZE}+vi2d{8,8},vi2d{EMULATOR_PIXEL_SIZE,EMULATOR_PIXEL_SIZE},{screen[y*EMULATOR_SCREEN_WIDTH+x],screen[y*EMULATOR_SCREEN_WIDTH+x],screen[y*EMULATOR_SCREEN_WIDTH+x]});
}
}
}
} else {
Clear(VERY_DARK_BLUE);
for (int x=0;x<EMULATOR_SCREEN_WIDTH;x++){
for (int y=0;y<EMULATOR_SCREEN_HEIGHT;y++){
if (display[y*EMULATOR_SCREEN_WIDTH+x]){
screen[y*EMULATOR_SCREEN_WIDTH+x]=255;
Draw({x,y},WHITE);
} else {
screen[y*EMULATOR_SCREEN_WIDTH+x]=std::max(0,screen[y*EMULATOR_SCREEN_WIDTH+x]-36);
Draw({x,y},{screen[y*EMULATOR_SCREEN_WIDTH+x],screen[y*EMULATOR_SCREEN_WIDTH+x],screen[y*EMULATOR_SCREEN_WIDTH+x]});
}
}
}
}
}
std::string GetInstructionDescription(uint16_t opcode){
uint8_t nibble1 = opcode>>12;
uint8_t X = opcode>>8&0xF;
uint8_t Y = opcode>>4&0xF;
uint8_t N = opcode&0xF;
uint8_t NN = opcode&0x00FF;
uint16_t NNN = opcode&0x0FFF;
switch(nibble1){
case 0x0:{
switch (NNN){
case 0x0E0:{ //Clear screen.
return "CLEAR SCREEN";
}break;
case 0x0EE:{ //Return from subroutine.
return "<<<RETURN";
}break;
}
}break;
case 0x1:{ //Jump.
std::stringstream jump;
jump<<"JUMP PC=0x"<<std::hex<<std::setfill('0')<<std::setw(4)<<NNN;
return jump.str();
}break;
case 0x2:{ //calls the subroutine at memory location NNN
std::stringstream call;
call<<"CALL ("<<std::hex<<std::setfill('0')<<std::setw(4)<<NNN<<")";
return call.str();
}break;
case 0x3:{//If register X is equal to NN, skip instruction.
return "IF V"+std::to_string(X)+"!="+std::to_string(NN);
}break;
case 0x4:{//If register X is not equal to NN, skip instruction.
return "IF V"+std::to_string(X)+"=="+std::to_string(NN);
}break;
case 0x5:{//If register X is equal to register Y, skip instruction.
return "IF V"+std::to_string(X)+"!=V"+std::to_string(Y);
}break;
case 0x6:{ //Set the register X to NN.
return "SET V"+std::to_string(X)+"="+std::to_string(NN);
}break;
case 0x7:{ //Add w/no carry
return "ADD_NC V"+std::to_string(X)+"+="+std::to_string(NN);
}break;
case 0x8:{
switch(N){
case 0x0:{//VX is set to the value of VY.
return "SET V"+std::to_string(X)+"=V"+std::to_string(Y);
}break;
case 0x1:{//Binary OR VX w/VY.
return " OR V"+std::to_string(X)+"|=V"+std::to_string(Y);
}break;
case 0x2:{//Binary AND VX w/VY.
return " AND V"+std::to_string(X)+"&=V"+std::to_string(Y);
}break;
case 0x3:{//Logical XOR VX w/VY.
reg[X]^=reg[Y];
return " XOR V"+std::to_string(X)+"^=V"+std::to_string(Y);
}break;
case 0x4:{//Add VY to VX, set carry bit if overflow occurs.
return "ADD V"+std::to_string(X)+"+=V"+std::to_string(Y);
}break;
case 0x5:{// sets VX to the result of VX - VY.
return "SUBTRACT V"+std::to_string(X)+"-=V"+std::to_string(Y);
}break;
case 0x6:{//Shift Right
return "RSHIFT V"+std::to_string(X)+">>1";
}break;
case 0x7:{//sets VX to the result of VY - VX. It's a reverse subtraction.
return "SUBTRACT V"+std::to_string(X)+"=V"+std::to_string(Y)+"-V"+std::to_string(X);
}break;
case 0xE:{//Shift Left
return "LSHIFT V"+std::to_string(X)+"<<1";
}break;
}
}break;
case 0x9:{//If register X is not equal to register Y, skip instruction.
return "IF V"+std::to_string(X)+"==V"+std::to_string(Y);
}break;
case 0xA:{ //This sets the index register I to the value NNN.
std::stringstream set;
set<<"SET I=0x"<<std::hex<<std::setfill('0')<<std::setw(4)<<NNN;
return set.str();
}break;
case 0xB:{//Jump w/Offset
std::stringstream jump;
jump<<"JUMP_OFFSET PC"<<"=0x"<<std::hex<<std::setfill('0')<<std::setw(4)<<NNN<<"+[V0]";
return jump.str();
}break;
case 0xC:{//Random number from 0 to NN.
return "RAND (0-"+std::to_string(NN)+")";
}break;
case 0xD:{ //Display
return "DISPLAY X:[V"+std::to_string(X)+"],Y:[V"+std::to_string(Y)+"] H:"+std::to_string(N);
}break;
case 0xE:{
switch (NN){
case 0x9E:{//EX9E: Skip an instruction if key in VX is pressed.
return "IF KEY_UNHELD [V"+std::to_string(X)+"]";
}break;
case 0xA1:{//EXA1: Skip an instruction if key in VX is not pressed.
return "IF KEY_HELD [V"+std::to_string(X)+"]";
}break;
}
}break;
case 0xF:{
switch (NN){
case 0x07:{//sets VX to the current value of the delay timer
return "GET DELAY_TIMER -> V"+std::to_string(X);
}break;
case 0x15:{//sets the delay timer to the value in VX
return "SET DELAY_TIMER = [V"+std::to_string(X)+"]";
}break;
case 0x18:{//sets the sound timer to the value in VX
return "SET SOUND_TIMER = [V"+std::to_string(X)+"]";
}break;
case 0x1E:{//The index register I will get the value in VX added to it.
return "ADD I+=[V"+std::to_string(X)+"]";
}break;
case 0x0A:{//This instruction “blocks”; it stops executing instructions and waits for key input
return "WAIT KEY_INPUT";
}break;
case 0x29:{//The index register I is set to the address of the hexadecimal character in VX.
return "SET I = FONT([V"+std::to_string(X)+"])";
}break;
case 0x33:{//Binary-coded decimal conversion
return "SET [I~I+3] = BCD([V"+std::to_string(X)+"])";
}break;
case 0x55:{//Stores registers from V0 to VX in memory pointed by index.
return "STORE V0~V"+std::to_string(X)+" in I~I+"+std::to_string(X);
}break;
case 0x65:{//Retrieves registers from V0 to VX in memory pointed by index.
return "LOAD V0~V"+std::to_string(X)+" in I~I+"+std::to_string(X);
}break;
}
}break;
}
return "???";
}
void RunInstruction(){
//FETCH //FETCH
uint16_t opcode = memory[pc]<<8|memory[pc+1]; uint16_t opcode = memory[pc]<<8|memory[pc+1];
pc+=2; pc+=2;
@ -260,22 +468,22 @@ public:
reg[X]=distrib(gen)&NN; reg[X]=distrib(gen)&NN;
}break; }break;
case 0xD:{ //Display case 0xD:{ //Display
uint8_t start_X=reg[X]%ScreenWidth(); uint8_t start_X=reg[X]%EMULATOR_SCREEN_WIDTH;
uint8_t start_Y=reg[Y]%ScreenHeight(); uint8_t start_Y=reg[Y]%EMULATOR_SCREEN_HEIGHT;
reg[0xF]=0; reg[0xF]=0;
for (uint8_t y=0;y<N;y++){ for (uint8_t y=0;y<N;y++){
uint16_t spriteRow=memory[index+y]; uint16_t spriteRow=memory[index+y];
//std::cout<<spriteRow<<std::endl; //std::cout<<spriteRow<<std::endl;
for (uint8_t x=0;x<8;x++){ for (uint8_t x=0;x<8;x++){
if (start_X+x<ScreenWidth()&&start_Y+y<ScreenHeight()){ if (start_X+x<EMULATOR_SCREEN_WIDTH&&start_Y+y<EMULATOR_SCREEN_HEIGHT){
//Memory loc: 0x50 //Memory loc: 0x50
//0xF0,0x90,0x90,0x90,0xF0 //0xF0,0x90,0x90,0x90,0xF0
bool pixel = spriteRow>>(8-x-1)&0x1; bool pixel = spriteRow>>(8-x-1)&0x1;
if (display[(start_Y+y)*ScreenWidth()+(start_X+x)]&&pixel){ if (display[(start_Y+y)*EMULATOR_SCREEN_WIDTH+(start_X+x)]&&pixel){
//std::cout<<"Double on."<<std::endl; //std::cout<<"Double on."<<std::endl;
reg[0xF]=0; reg[0xF]=0;
} }
display[(start_Y+y)*ScreenWidth()+(start_X+x)]=display[(start_Y+y)*ScreenWidth()+(start_X+x)]^pixel; display[(start_Y+y)*EMULATOR_SCREEN_WIDTH+(start_X+x)]=display[(start_Y+y)*EMULATOR_SCREEN_WIDTH+(start_X+x)]^pixel;
} }
} }
} }
@ -355,33 +563,19 @@ public:
}break; }break;
} }
} }
Clear(VERY_DARK_BLUE);
for (int x=0;x<ScreenWidth();x++){
for (int y=0;y<ScreenHeight();y++){
if (display[y*ScreenWidth()+x]){
screen[y*ScreenWidth()+x]=255;
Draw({x,y},WHITE);
} else {
screen[y*ScreenWidth()+x]=std::max(0,screen[y*ScreenWidth()+x]-36);
Draw({x,y},{screen[y*ScreenWidth()+x],screen[y*ScreenWidth()+x],screen[y*ScreenWidth()+x]});
}
}
}
}
return true;
}
bool OnUserDestroy()override{
return true;
}
}; };
int main() int main()
{ {
Chip8Emulator demo; Chip8Emulator demo;
if (USE_DEBUG_DISPLAY){
if (demo.Construct(800, 360, 2, 2))
demo.Start();
} else {
if (demo.Construct(64, 32, 10, 10)) if (demo.Construct(64, 32, 10, 10))
demo.Start(); demo.Start();
}
return 0; return 0;
} }

@ -606,7 +606,7 @@ namespace olc
NP0, NP1, NP2, NP3, NP4, NP5, NP6, NP7, NP8, NP9, NP0, NP1, NP2, NP3, NP4, NP5, NP6, NP7, NP8, NP9,
NP_MUL, NP_DIV, NP_ADD, NP_SUB, NP_DECIMAL, PERIOD, NP_MUL, NP_DIV, NP_ADD, NP_SUB, NP_DECIMAL, PERIOD,
EQUALS, COMMA, MINUS, EQUALS, COMMA, MINUS,
OEM_1, OEM_2, OEM_3, OEM_4, OEM_5, OEM_6, OEM_7, OEM_8, OEM_1, OEM_2, OEM_3, OEM_4 /*[*/, OEM_5, OEM_6 /*]*/, OEM_7, OEM_8,
CAPS_LOCK, ENUM_END CAPS_LOCK, ENUM_END
}; };

Loading…
Cancel
Save